Mansoura Journal of Chemistry V. 39 (1) June 2012

ANTIBACTERIAL DRUGS AS GREEN CORROSION INHIBITORS FOR COPPER IN HYDROCHLORIC ACID SOLUTION

A.S.Fouda^{**}, and H.Gadow^b and Marwa Anwar Saad^{**} ^{*}Department of Chemistry, Faculty of Science, El-Mansoura University, El-Mansoura-35516, Egypt email. <u>asfouda@mans.edu.eg</u>, Tel: +2 050 2365730, Fax: +2 050 2246254

Received: (20/ 3 / 2012)

ABSTRACT

The effect of ampicillin and amoxicillin on the corrosion of copper was evaluated in 0.1 M HCl at various concentrations using electrochemical techniques (potentiodynamic polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM)). The results of polarization studies indicate that the investigated drugs are mixed type inhibitors. It was observed that inhibition efficiency increased with increasing inhibitor concentration and decreased with increasing temperature. Thermodynamic activation and adsorption parameters were calculated and discussed. Adsorption of these drugs on the metal surface was found to follow Langmuir adsorption isotherm. A clear correlation was found between corrosion inhibition efficiency and theoretical parameters obtained by PM3 semi empirical method. The experimental results are supported by the theoretical data.

INTRODUCTION

Copper has an excellent electrical and thermal conductivities, good corrosion resistance and mechanical workability. It is widely used in heating and cooling systems. Corrosion of copper can lead to many problems, the most being per formation that may result in coolant leakage. Scales and corrosion products have negative influence on heattransfer, causing a decrease in heating efficiencies of the copper structures [Crundwell et al., (1992)]. Thus, corrosion of copper and its alloys and their inhibition in aqueous chloride solutions have attracted the attention of a member of investigators [Wang et al., (2004); Sherif et al., (2005); Qu et al., (2005); Bellakhal N et al., (2004) and Fouda et al., (1988)]. The use of organic inhibitors is one of the most practical methods for protection against corrosion of metals and their alloys. Generally, numerous organic compounds containing hetero atoms such as nitrogen [Abd-EI-Nabey et al., (1996); Quraishi and Iamal ., (2000) and Lagrenee et al., (2001)], oxygen [Abd EI-Rehim et al., (1999); Bentiss et al., (1999); Hosseini et al., (2003) and Migahed et al., (2003)], phosphorus [Khamis et al., (2000)] and sulphur [Quraishi et al., (2002); Popova et al., (2003); Quaraishi et al., (2002) and El Azhar et al., (2001)] are used as corrosion inhibitors. Studies of the relation between adsorption and corrosion inhibition are of considerable importance.

In aqueous solutions, the inhibitory action of organic inhibitors is due to their physical (electrostatic) adsorption onto the metal surface, depending on the charge of the metal surface, the electronic structure of organic inhibitor and the nature of the medium [Bentiss et al., (2000) and Cruz et al., (2004)].

Because of the fact that most of the chemical compounds that prevent the corrosion of metals and alloys are toxic, and thus pose threat both for human health and environment, their usage is limited. For this reason, several authors reported the use of natural products as corrosion inhibitors [Biligic et al., (2005)], also, some authors used drugs as green corrosion inhibitors for various metals and alloys [Singh et al., (2010); Morad et al., (2008); Mareci et al., (2005); Von Fraunhofer et al., (1991); Eddy et al., (2010); Ogoko et al., (2009) and Samide, Tutunaru, (2011)].

The use of environmental friendly pharmaceutical compounds (ampicillin and amoxicillin) as corrosion inhibitors for copper has not been reported before. So, our aim is to study the inhibiting effect of these drugs on copper corrosion in HCl solution using various electrochemical techniques.

EXPERIMENTAL

The working electrode used in the present work was made of pure cylindrical copper rod (99.9 %), welded with copper wire for electrical connection and mounted into suitable glass tube using epoxy resin so that

٩

•

Some inhibitors-copper corrosion-Hcl soln.

its cross-sectional area (0.5 cm^2) was in contact with the test solution. The exposed area of the electrode was abraded using different grades of emery papers (800, 1000, 1200 grit), degreased with alcohol, and then washed by bidistilled water and finally dried. The experiments were performed in HCl solution without and with different concentrations of ampicillin and amoxicillin as inhibitors. All solutions were freshly prepared from analytical grade chemical reagents using bidistilled water and were used without further purification (as received).

Table(1): Name and the structural formula of the investigated inhibitors.

1. Potentiodynamic polarization measurements.

1

ł

Polarization experiments were carried out at different temperatures (25-50 °C) in a conventional three-electrode cell with a

platinum counter electrode and a saturated calomel electrode (SCE) coupled to a fine Luggin capillary as the reference electrode. The working electrode was in the form of disc cut from copper sheet embedded in epoxy resin of poly tetrafluoroethylene. Before measurement, the electrode was immersed in solution until a steady state was reached (20 min). All experiments were carried out in freshly prepared solutions and results were always repeated at least three times to check the reproducibility. The inhibition efficiency and surface coverage (θ) were determined using the following equation:

$$\%\eta = \theta x 100 = [(i_{corr} - i'_{corr})/i_{corr}] x 100$$
(1)

where i_{corr} and i'_{corr} are the current densities in the absence and presence of inhibitor, respectively.

2. Electrochemical impedance spectroscopy.

Electrochemical impedance spectroscopy (EIS) was performed at corrosion potential, E_{corr} , over a frequency range of 10⁵ Hz to 0.5 Hz with a signal amplitude perturbation of 5 mV. Data were presented as Nyquist and Bode plots. Experiments were always repeated at least three times. Degree of surface coverage (θ) and inhibition efficiency (% η) were calculated using the following equation:

$$\%\eta = \theta x 100 = [(1/R'_{ct}) - (1/R_{ct})]/(1/R'_{ct}) x 100$$
(2)

where R'_{ct} and R_{ct} are the charge transfer resistance in the presence and absence of inhibitor, respectively.

3. Electrochemical frequency modulation technique (EFM).

EFM experiments were performed with applying potential perturbation signal with amplitude 10 mV with two sine waves of 2 and 5 Hz. The choice for the frequencies of 2 and 5 Hz was based on three arguments [Bosch *et al.*, (2001)]. The larger peaks were used to calculate the corrosion current density (i_{corr}), the Tafel slopes (b_c and b_a) and the causality factors CF-2 and CF-3 [Abd El-Rehim *et al.*, (2006) and G.trabanelli *et al.*, (1987)]. The inhibition efficiency η_{EFM} % was calculated as follows:

$$\eta_{EFN1} \% = [1 - (i_{corr} / i^{\circ}_{corr})] \times 100$$
(3)

4

۰.

Some inhibitors-copper corrosion-Hcl soln.

All the electrochemical experiments were carried out using Gamry PCI300/4 Potentiostat / Galvanostat/Zra analyzer, EIS300 Electrochemical Impedance software, EFM140 Electrochemical Frequency Modulation software, DC105 polarization software and Echem 5.21 for results plotting, graphing, data fitting and calculating.

4. Quantum chemical calculations.

1

Ì

Materials studio V.4.4.0 was used for molecular modeling. The molecular orbital calculation are based on a semiempirical self-consistent field molecular orbital (SCF-MO) method A full optimization of all geometrical variables without any symmetry constraints was performed at the restricted Hartee-Fock (RHF) level using Parameterization Model 3 (PM3) method.

RESULTS AND DISCUSSION

1. Potentiodynamic polarization measurement.

Potentiodynamic polarization curves of copper electrode in 0.1 M of HCl solution without and with various concentrations (100, 300, 500, 700, 900 ppm) of ampicillin and amoxicillin at different temperatures (25-55°C) were recorded. The polarization profile of copper in 0.1 M HCl at 25 °C in the presence of increasing amounts of amoxicillin is shown in Fig.(1). Similar curves were obtained for ampicillin (not shown). Electrochemical parameters such as corrosion current density (i_{corr}) , corrosion potential (E_{corr}) , anodic (b_a) and cathodic (b_c) Tafel slopes in all cases were calculated from Tafel plots. The calculated values are listed in Table(2). The presence of increasing amounts of amoxicillin led to a decrease in both the cathodic and anodic current density. This behavior was observed for all of the temperatures under study. It is clear from these data that the inhibitors may affect either the anodic or the cathodic reaction, or both [RameshSaliyan et al., (2008)]. Since the anodic (b_a) and cathodic (b_c) Tafel slopes of ampicillin and amoxicillin were found to change with inhibitor concentration, this indicates that these inhibitors affected both of these reactions [Li et al., (2009)].

The addition of ampicillin and amoxicillin shifts the E_{corr} values towards the negative. A compound can be classified as an anodic-or cathodic-type inhibitor when the change in E_{corr} value is larger than 85

mV [Li et al., (2008)]. Since the largest displacement exhibited by ampicillin and amoxicillin was less than 85 mV Table (2), it may be concluded that these molecules should considered as a mixed-type inhibitor, meaning that the addition of these drugs to 0.1 M HCl solution both reduces the anodic dissolution of copper and also retards the cathodic hydrogen evolution reactions.

From the calculated values of $(\% \eta)$ at different temperatures as shown in **Table (2)**, the order of decreasing inhibition efficiency is: ampicillin > amoxicillin.

Fig.(1): Potentiodynamic polarization curves of copper in 0.1 M HCl at different concentrations of amoxicillin at 25°C.

Some inhibitors-copper corrosion-Hcl soln.

;

Table(2): Electrochemical parameters obtained from potentiodynamic polarization measurements for copper in 0.1 M of HCl in the absence and presence of different concentrations of ampicillin and amoxicillin at 25°C

Comp	Сопс. ррт	-E _{corr} m∀vs SCE	і _{сон} µА ст ⁻³	b _{c,} שע מב _ד יו	ba, avdrç	Кр Ωħm m) ⁻²	θ	%ղ	ບ mmy ⁻ⁱ
Blank		94	284.10	670	351	352		W - A -	3.296
Ampicillia	100	141	89.91	730	371	903	0.684	68.4	1.373
	000	150	74.89	1325	261	1265	0.736	73.6	0.869
	500	160	53.42	951	232	1513	0.812	81.2	0,620
	700	167	49.10	841	229	1593	0.827	82,7	0.\$70
	900	153	30.36	523	221	2223	0.893	89.3	0.352
Amoxictifia	100	15!	48.18	920	231	1661	0.831	83.1	0.559
	300	159	41.93	876	237	1933	0.853	85.3	0.486
	500	160	40.91	897	247	2054	0.859	85.9	0.475
	700	167	35.68	814	246	2210	0.874	87.4	0.414
	900	174	2793	592	227	2554	0.902	90.2	0.324

2. Electrochemical impedance spectroscopy (EIS).

EIS is a well-established and powerful technique in the study of corrosion. Surface properties, electrode kinetics and mechanistic information can be obtained from impedance diagrams. Fig. (2)(a & b) shows the Nyquist and Bode plots obtained in the absence and presence of increasing concentrations of amoxicillin. Similar curves were obtained for ampicillin (not shown). The Nyquist plots of ampicillin and amoxicillin are not perfect semicircles, which is attributed to nonhomogeneity of the surface and roughness of the metal [F.Bentis *et al.*, (2009)]. From the plots, it could be seen that impedance response of copper is increased by the addition of ampicillin and amoxicillin [Ahmed *et al.*, (2009)]. For a corrosion system, the formation of double layer at metal/solution interface can be represented by the electronic equivalent circuit Fig(.3).

The C_{dl} and R_{ct} values calculated from Nyquist plots are listed in **Table (3.)** The R_{ct} values increased with the increase in the concentration of inhibitors, which shows protection of copper surface by the inhibitors while the values of C_{dl} decreased with the increase in the concentration of inhibitors, which is due to the increase in the thickness of protective layer at higher concentrations [Xu,Duan *et al.*,(2008)and Elayyachy *et al.*,(2006)]. Inhibition efficiency, calculated from the values of R_{ct} [El-Etre *et al.*, (2004)] was found to be maximum at a concentration of 700 ppm of both inhibitors. The results of EIS were in good agreement with the results of polarization.

It was found that the inhibition efficiency (η_{EIS} %) of these inhibitors follows the following sequence: amoxicillin > ampicillin

Fig. (2): Nyquist (a) and the Bode (b) plots for corrosion of copper in 0.1 M HCl in the absence and presence of different concentrations of amoxicillin at 25°.

Table (3): Electrochemical kinetic parameters obtained from EIS technique for copper in 0.1 M HCl in the absence and presence of different concentrations of ampicillin and amoxicillin

Comp.	Conc. ppm	R _p ohm cm ²	C _{al} µFcm ⁻²	θ	% q
Blank		172.7	1560		
	100	253.1	1220	0.318	31.8
- illi	300	261.2	1190	0.339	33.9
Атріс	500	262.8	1030	0.343	34.3
	700	303.5	835	0.431	43.1
Amoxicillín	100	285.7	1490	0.395	39.6
	300	297.9	1320	0.422	42.2
	500	390.0	1090	0.557	55.7
	700	447.0	963	0.614	61.4

3. Electrochemical frequency modulation technique (EFM).

EFM is a nondestructive corrosion measurement technique that can directly give values of the corrosion current without a prior knowledge of Tafel constants. The great strength of the EFM is the causality factors which serve as an internal check on the validity of EFM measurement. The causality factors CF-2 and CF-3 are calculated from the frequency spectrum of the current responses shown in Table 4. Fig 3 shows the frequency spectrum of the current response of copper in HCl solution. From the results of Table (4), the inhibition efficiency (η_{EFM} %) of these drugs follows the same sequence as before: amoxicillin > ampicillin ÷

Some inhibitors-copper corrosion-Hcl soln.

47

.

Table (4): Electrochemical kinetic parameters obtained by EFM technique for copper in 0.1 M HCl in the absence and presence of different concentrations of ampicillin and amoxicillin at 25°.

Comp.	Солс, ррт	i _{coπ} μA cm ⁻²	ba mV dec ⁻¹	b₀ mV dec⁻¹	CR mpy	CF-2	CF-3
Blank		135.00	40	57	34.6 6	1.828	3.045
Ampicillin	100	91.71	32	69	23.99	1.977	3.127
	300	55.95	. 34	74	14.64	1.941	3.167
	500	46.37	34	62	12.13	1.910	3.056
	700	41.82	. 37	74	10.94	1.921	3.005
Antoxicilitin	100	66.72	37	74	17.45	1.900	3.248
	300	53.65	28	50	12.19	2,108	4.547
	500	46.60	31	62	14.04	1.865	3.581
	700	40.48	29	53	10.59	1.759	3.417

Fig.(3a): Intermodulation spectra for copper in 100 ppm of amoxicillin.

Fig.(3b): Intermodulation spectra for copper in 300 ppm of Amoxicillin.

*

Some inhibitors-copper corrosion-Hcl solu.

ŝ

Fig.(3c): Intermodulation spectra for copper in 500 ppm of amoxicillin.

Fig.(3d): Intermodulation spectra for copper in 700 ppm of amoxicillin.

4. Adsorption isotherm.

The investigated compounds inhibit the corrosion by adsorption at the metal surface. Theoretically, the adsorption process has been regarded as a simple substitutional process, in which an organic molecule in the aqueous phase substitutes an (y) number of water molecules adsorbed on the metal surface.

A number of mathematical relationships for the adsorption isotherms have been suggested to fit the experimental data of the present work. The simplest equation is that due to [de Souza *et al.*, (2009)] Langmuir which is given by the general relation:

$$\mathbf{C} / \mathbf{\Theta} = (1/\mathbf{K}_{\mathrm{ads}}) + \mathbf{C}$$
(4)

where K_{ads} is the equilibrium constant for the adsorption/desorption process, C is the inhibitor concentration in the bulk of the solution in mol L^{-1} .

From the intercepts of the straight lines on the C/ Θ axis, (Figure 4), one can calculate K_{ads} values that relate the stander free energy of adsorption, (ΔG°_{ads}), as given by Eq. (5) [Li *et al.*, (2008)]:

$$K_{ads} = 1/55.5 \exp\left(-\Delta G^{\circ}_{ads}\right) / RT$$
(5)

The value of 55.5 is the concentration of water in the bulk solution in mol L^{-1} .

Free energy, ΔG°_{ads} , values were calculated and are given in **Table 5**, the negative values of ΔG°_{ads} indicate spontaneous adsorption of inhibitors on copper surface [Mu *et al.*, (2005)]. Generally, values of ΔG°_{ads} up to -20 kJ mol⁻¹ are consistent with physisorption, while those around -40 kJ mol⁻¹ or higher are associated with chemisorptions as a result of the sharing or transfer of electrons from inhibitor molecules to the metal surface to form co-ordinate bond [Moretti *et al.*, (2004)]. The calculated ΔG°_{ads} values are 23-35 kJ mol⁻¹ indicating that the adsorption mechanism of amoxicillin and ampicillin in 0.1 M HCl solution at the studied temperatures is mixed one (physisorption and chemisorption).

κ.

Fig.(4): Langmuir adsorption isotherms for ampicillin and amoxicillin for corrosion of copper in 0.1 M HCl solution at 25°C.

5. Thermodynamic adsorption parameters

Thermodynamic adsorption parameters such as enthalpy of adsorption ΔH_{ads}° and entropy of adsorption ΔS_{ads}° can be deduced from integrated version of the Vant't Hoff equation expressed by [Abd El-Rehim *et al.*, (2004)]:

$$\ln K_{ads} = (-\Delta H_{ads}^{\circ}/RT) + (\Delta S_{ads}^{\circ}/R) + \ln (1/55.5)$$
(6)

Figure 5 shows the plot of $\ln K_{ads.}$ vs. 1/T which gives straight lines with slopes ($-\Delta H'_{ads}/2.303R$) and intercepts [($\Delta S'_{ads}/2.303R$) + ln (1/55.5)]. Calculated values of $\Delta H'_{ads}$ and $\Delta S'_{ads}$ using the Van't Hoff equation are listed in **Table 5**. The negative sign of $\Delta H'_{ads}$ indicates that the adsorption of amoxicillin and ampicillin on copper surface is an

exothermic process. The average value of ΔH°_{ads} is about 20-40 kJ mol⁻¹, which is larger than the common physical adsorption heat (40 kJ mol⁻¹), but smaller than the common chemical adsorption heat (100 kJ mol⁻¹) [Mu et al., (2005)], probably meaning that both physical and chemical adsorption take place (i.e. comprehensive adsorption).

The negative ΔS°_{ads} values are accompanied with exothermic adsorption process. This is agrees with the expected, when the adsorption is an exothermic process, it must be accompanied by a decrease in the entropy change and vice versa [Thomas et al., (1981)].

Fig.(5): log K_{ads} vs. (1/T) curves for the corrosion of copper in 0.1 M HCl in the absence and presence of different concentrations of amoxicillin and ampicillín at different temperatures.

Some inhibitors-copper corrosion-Hcl soln.

Table (5): Thermodynamic parameters for the adsorption of ampicillin and amoxicillin on copper in 0.1 M of HCl at different temperatures.

Inhibitors	Temp., K	K _{ads} x10 ⁻⁴ M ⁻¹	-AG ads kJ mol ⁻¹	-AH _{eds} kJ mol ⁻¹	-∆S _{ads} J mol ⁻¹ K ⁻¹
	298	0.60	29.15		and an
	308	0.42	26.18		
Ampi	318	0.41	25.98	21.2	76.0
	328	0.31	23.66		
	298	1.22	35.05		
cillin	308	0.52	27.96		
тиохі	318	0.48	27.29	41.3	137.9
	328	0.38	25.35		

6. Effect of temperature

ł,

Generally the corrosion rate increases with the rise of temperature. It was found that the inhibition efficiency decreases with increasing temperature. This can be attributed to the shift of the adsorption-desorption equilibrium towards desorption. Such behavior suggests that investigated compounds were physically adsorbed on copper surface. The activation energy (E_a) of the corrosion process was calculated using Arrhenius equation:

$$\mathbf{i}_{corr} = \mathbf{A} \exp(-\mathbf{E}_{a}^{*}/\mathbf{RT})$$
(7)

where A is Arrhenius constant, R is the gas constant and T is the absolute temperature. Figure 6 shows the Arrhenius plot (log i_{corr} vs. 1/T) in the presence and absence of amoxicillin and ampicillin. The values of activation energies E_{a}^{*} can be obtained from the slopes of the straight lines and are given in Table 6. It is noted that the values of activation energy is higher in the presence of inhibitors than in their absence

indicating that inhibitors exhibit low $\% \eta$ at elevated temperatures [A.Khedr *et al.*, (1992)] and also, due to the film formation on copper surface.

An alternative formulation of the Arrhenius equation is the transition state equation [Putilova et al., (1960)]:

$i_{corr} = RT/Nh \exp (\Delta S^*/R) \exp(-\Delta H^*/RT)$ (8)

where h is Planck's constant, N is Avogadro's number, ΔS^* is the entropy of activation and ΔH^* is the enthalpy of activation. Fig. 7 shows a plot of log (i_{corr}/T) vs. (1/T). Straight lines were obtained with slopes of ($\Delta H^*/2.303R$) and intercepts of (log R/ Nh + $\Delta S^*/2.303R$) from which the values of ΔH^* and ΔS^* were calculated and listed in **Table 6**. The negative values of ΔH^* reflect that the process of corrosion is an exothermic one. The negative values of ΔS^* implies that the activation complex is the rate determining step that represents an association rather than dissociation step [O'M.Bockris *et al.*, (1977)]. This means that the activated molecules are in higher order state than that the initial state.

7. Mechanism of inhibition.

The adsorption of investigated compounds can be attributed to the presence of polar unit having atoms of nitrogen, sulphur and oxygen and aromatic/heterocyclic rings. Therefore, the possible reaction centers are unshared electron pair of hetero-atoms and π -electrons of aromatic ring [Ahamad *et al.*, (2010)].

•

ß

Fig.(6): log i_{corr} vs. (1/T) curves for the corrosion of copper in 0.1 M HCl in the absence and presence of different concentrations of amoxicillin at different temperatures.

Fig.(7): log (i_{corr}/T) vs. (1/T) curves for the corrosion of copper in 0.1 M HCl in the absence and presence of different concentrations of amoxicillin at different temperature.

٩,

.

- ----

į

.

'n

٠

Inhibitors	Conc., ppm	Ea [*] kJ mol ⁻¹	∆ H [*] kJ mol ⁻¹	ΔS^{\bullet} J mol ⁻¹ K ⁻¹
Bla	nk	9.4	19.1	226.3
	100	21.1	22.0	215.2
Ŀ,	300	22.9	22.4	212.6
npicill	500	24.9	23.2	209.4
An	700	26.8	24.2	207.3
	900	27.8	25.1	205.7
	100	32.6	25.1	211.3
Ë	300	34.5	25.7	205.5
loxicil	500	35.4	29.5	203.6
Ал	700	36.4	30.1	200.4
	900	38.3	32.6	198.5

Table (6): Kinetic-thermodynamic corrosion parameters for copper
corrosion in the absence and presence of various
concentrations of ampicillin and amoxicillin

The adsorption and inhibition effect of investigated compounds in 0.1 M HCl solution can be explained as follows: In general, two modes of adsorption are considered on the metal surface in acid media. In the first mode, the neutral molecules may be adsorbed on the surface of copper through the chemisorption mechanism, involving the displacement of water molecules from the copper surface and the sharing electrons between the hetero- atoms and Cu. The inhibitor molecules can also adsorb on the copper surface on the basis of donor-acceptor interactions between n -electrons of the aromatic ring and vacant dorbitals of surface copper atoms. Thus we can conclude that inhibition of copper corrosion in 0.1 M HCl is mainly due to electrostatic interaction. The decrease in inhibition efficiency with rise in temperature supports electrostatic interaction.

The order of inhibition is decreased as the following order: amoxicillin > ampicillin. This due to its larger molecular weight and the presence of OH group in it, which increases the electron charge density on the molecule.

CONCLUSIONS

The results obtained show that amoxicillin and ampicillin are good corrosion inhibitors for copper under acidic conditions. The maximum inhibition efficiency was 96%. Excellent agreement between the inhibition efficiencies calculated using different techniques was obtained. The adsorption of the amoxicillin and ampicillin onto the steel surface was characterized by the decrease in: (i) the cathodic and anodic current densities observed in the potentiodynamic polarization curves carried out in the presence of amoxicillin and ampicillin, (ii) the weight loss of the coupons immersed in the solutions containing the inhibitors and (iii) the double-layer capacitance computed from electrochemical impedance spectroscopy experiments. The adsorption behavior of the amoxicillin and ampicillin is consistent with Langmuir adsorption isotherm. Amoxicillin and ampicillin are adsorbed on copper surface following physisorption and chemisorption mechanism. The results of polarization indicated that amoxicillin and ampicillin are of mixed type. A good agreement was obtained between all the investigated electrochemical techniques.

REFERENCES

Abd EI-Rehim S S, Ibrahim M and Khaled K F, I Appl Electrochem., 29 (1999) 593.

Abd El-Rehim S.S., Hassan H.H., Amin M.A, Corros. Sci., 46(2004)5-25.

Abd El-Rehim S.S., Khaled K.F., Abd El-Shafi N.S., Electrochim.Acta, 51(2006)3269-3277.

Abd-EI-Nabey B. A, Khamis E., Ramadan M Sh and EI-Gindy A, Corrosion, 52(1996) 671-679.

Ahamad I., Prasad R and Quraishi M.A., Corros. Sci., 52 (2010) 3033.

Ahmed I.,.quraishi M.A, Corros.Sci., 51(2009)2006-2013.

Bellakhal N, Dachraoui M. Mater Chem Phys 85 (2004)366-369.

Bentis F., Iama C., Mernari B., Elattri H., Kandi L, Lebrini M., Traisnel M., M.Lagren, Corros.Sci., 51(2009)1628-1635.

Bentiss F, Traisnel M, Gengembre L and Lagrene'e M, *Appl Surf Sci.*, **152** (1999) 237-249.

Bentiss F., Lagrenee M., Trainsel M., Corrosion 56 (2000) 733.

Biligic S, Korozyon, 13(2005)1-7.

1

i

Bockris I.O.M., Reddy A.K.N., Modern Electrochemistry, Vol.2, Plenum Press, New

Bosch R.W, Hubrecht I., Bogaerts W.F., Syrett B.C, Corrosion, 57(2001)60-70.

Crundwell F.K., Electrochim. Acta, 37 (1992) 2101-2102.

Cruz I, Martinez R, Genesca I, Gracia-Ochoa E, Electroanal I. Chem. 566 (2004) 111-

de Souza F.S., Corros.Sci., 51(2009)642-649.

Eddy N.O., Odoemelam S.A., Ogoko E.C., Ita B.I., Port. Electrochim. Acta 28 (2010) 15-26.

El Azhar M, Memari B, Traisnel M, Bentiss F and Lagrene'e M, Corros Sci., 43(2001) 2229-2238.

Elayyachy M., Edrissi A, Hammouti B, Corros. Sci., 48(2006)2470-2479.

El-Etre A.Y., Abdallah M., Corros.Sci., 47(2004)385-395.

Fouda A.S., Mohamed AK, Werk.Forros., 39(1988)23-28.

Hosseini M G., Mertens S F L, Ghorbani M., and Arshadi M R, Mater Chem Phys., 78(2003) 800.

Khamis E, El-Ashry E S H and Ibrahim A K, Br. Corros. J., 35 (2000) 150-

Khedr M.G.A.Lashien, M.S. Corros.Sci., 33(1992)137-151.

Lagrene'e M, Memaru B, Chaibi N., Traisnel M., Vezin H and Bentiss F., Corros Sci., 43 (2001) 951.

Li F.G., Du M., Zhang I., Pei C., Hou B., Corros.Sci., 51(2009)102-109.

Li W., He Q., Zhang S., Pei C., Hou B., I. Appl.Electrochem., 38(2008)289-295.

Li X., Tang L., Lui H., Mu G., Lui G., Mater.Lett., 62(2008)2321-2324

Mareci D., Nemtoi Gh., Aelenei N., Bocanu C., Euro. Cells Mater. 10 (2005) 1-7.

Migahed M, Mohamed H M and AI-Sabagh A M, Mater Chem Phys., 80 (2003)169-

Morad M.S, Corros. Sci. 50 (2008) 436 - 448.

Moretti G., Guidi F., Grion G., Corros.Sci., 46(2004)387-403.

Mu G, Li X., Liu G., Corros.Sci., 47(2005)1932-1952.

Mu G., Li X., Liu G., Corros.Sci., 47(2005)1932-1952.

Ogoko E.C., Odoemelam S.A., Ita B.I, Eddy N.O, Port. Electrochim. Acta, 27 (2009) 713-724.

Popova A, Sokolova E, Raicheva S and Christov M, Corros Sci., 45 (2003) 33-58.

Press, New York, 1960, p.31.

ł

ł

Putilova Balezin I.N, Baranik S.A, U.P, Metallic Corrosion Inhibitors, Pergamon.

Qu I-E, Guo X, Chen Z. Mater Chem Phys; 93(2005) 388-394.

Quaraishi M A and Rawat I, Mater Chem Phys., 77 (2002) 43-

Quraishi M A and Iamal D, Corrosion, 56 (2000) 156-

Quraishi M A and Sharma H K, Mater Chem Phys., 78 (2002) 18-21.

- RameshSaliyan V., Adhikari A.V., Corros.Sci., 50(2008)55-61.
- Samide A, Tutunaru B., Negrila C., Trandafir I., Maxut A., Dig. I. Nanomater. Bios 6 (2011)663–673.

Sherif EM, Park S-M. J.Electrochem Soc; (2005).

Singh AK,, Quraishi MA, Corros. Sei. 52 (2010) 152 –160.

Thomas I.M., Introduction to W.I, the Principles of Heterogeneous Catalysis, 5Th Ed, Academic Press, London (1981)14.

Trabanelli G, Mansfeld F., Corrosion Mechanisms, 2Ed, Marcel Dekker, New York, 1987, p.119.

Von I.A., Fraunhofer S.H., Stidham I., Biomed. Eng. 13 (1991) 424-428.

Wang C, Chen S, Zhao S. J. Electrochem Soc; 151 (2004) B11-5.

Xu F., Duan I., Sang S., Hou B., Mater. Lett., 62(2008)4072-4074. York, 1977, p. 1267. استخدام مضاد البكتيريا كمثبطات لتاكل النحاس في محلول حمض الهيدروكلوريك

عبد العزيز فودة - هند السيد جادو – مروة انور سعد قسم الكيمياء-كلية العلوم - جامعة المنصورة - مصر

يوجد للنحاس استخدامات عديدة في جميع مجالات الحياة ولكنه يواجه مشكلة التاكل في وجود محاليل حمض الهيدروكلوريك. والبحث يناقش كيفية حماية النحاس من التاكل باستحدام مثبطات متوفرة وصديقة للبيئة وايضا رخيصة الثمن .

تم مناقشة قدرة وكفاءة الاموكسيسلين والامبيسلين على تثبيط تاكل النحاس في محلول حمض الهيدروكلوريك باستحدام الطرق الاتية: قياس الاستقطاب الكهربى والممانعة الاسبكتروسكوبية الكهروكيميائية وتقنية تردد التحوير الكهروكيميائية. واظرت النقائج ان مركبات الاموكسيسلين و الامبيسلين تعمل كمثبطات جيدة جدا للتاكل. ووجد ايضا ان امتزاز المركبات على سطح المحدن يتبع ايزوثيرم لانجمير.