MENOUFIA UNIVERSITY
Faculty of Engineering
Shebin El-Kom
Final Examination
Academic Year :2013-2014
Date : 4/6/2014

Dept. of Production Eng.\& Mech. Design Second Year Mech. Power. Subject : M/c Elements Design . Code : PRE 228
Time Allowed : 3 Hours
Total Marks : 100

Tables \& Charts are allowed.
Question No. 1 (35 Marks)
a- Design a casted Flat- belt pulley to transmit 30 HP at $740 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The pulley diameter is 40 cm . The permissible tension for leather belt is $55.8 \mathrm{Kg} / \mathrm{cm}$. width \& $\mathrm{T} 1 / \mathrm{T} 2=2.36$. (20 Marks).
b-Design a GIB-head key required to fixing the pulley, where, $[\tau]=800-1200 \mathrm{Kg} / \mathrm{cm} 2$ (15 Marks).

Question No. 2 (15 Marks)
Two shafts are connected by means of a coupling to transmit 5 H.P at $1440 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The flanges of the coupling are fastened by means of 4 bolts at a radius of 30 mm .
Permissible shear stress in the bolts $=3 \mathrm{Kg} / \mathrm{sq} . \mathrm{mm}$. Design the bolts .

Good Luck, Dr. GABER M. SHEHA .

With our best wishes

Question 3:- (15 mark)

Design a lap joint for a mild steel tie-bar $450 \mathrm{mmx} \times 12 \mathrm{~mm}$ thick. Assume allowable stresses in tension and compression of the plate material as 112 MPa and 200 MPa respectively and shear stress of the rivets as 84 MPa . Take $\mathrm{d}_{\mathrm{o}}=6 \times \mathrm{S}^{1 / 2}$ and $\mathrm{t}=3 \mathrm{~d}$ 。 and $\mathrm{P}=196 \mathrm{KN}$.

Question 4:- (10 mark)

Determine the requisite length of a lap welds joining a steel strip to a plate. The strip dimensions are $150 \times 10 \mathrm{~mm}$. Load $=60$ ton. Material of strip and plate are St-3., and Electrodes EL-42. $\tau \operatorname{shp}=11$ $\mathrm{Kg} / \mathrm{mm}^{2}$., obrakep $=27 \mathrm{Kg} / \mathrm{mm}^{2}$, σ tent $=18 \mathrm{Kg} / \mathrm{mm}^{2}$.

C1	compression	Tension	shear
	1.00	0.90	0.60

Question:- (25 mark)

An electric motor, its power is 3 KW . It runs a gear box with three speeds, through a belt connection. $D_{1}=150 \mathrm{mmD}_{2}=2 D_{1} . Z_{1}=Z_{2}=30$ teeth. The chuck diameter is 200 mm , its speeds are n_{1}, n_{2}, n_{3} Equal 750, 500 , and 250 r.p.m respectively. Design the set of sliding gears. And determine the three linear speeds of the chuck. $\Psi=14, \sigma u$ driver $=53 \mathrm{~kg} / \mathrm{mm}^{2}$, σu driven $=44 \mathrm{~kg} / \mathrm{mm}^{2}, \mathrm{Kd}=1.3, €=0, \alpha=20^{\circ}$, and $\mathrm{d}_{1}=63 \mathrm{~mm}$.

