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 In this article, the multistage homotopy perturbation method (MHPM) is 

applied for solving differential systems with fractional order derivatives 

in the Caputo sense. This method is a modification of the standard 

homotopy perturbation method (HPM). A fractional Lorenz system as 

an application is presented for which some numerical comparisons 

between the (MHPM) and (HPM) with the 4th order Runge-Kutta 

method (RK4). The results reveal that the used pre-mentioned procedure 

(MHPM) is a reliable and an effective tool for constructing an accurate 

approximate solution for the fractional Lorenz system. 

© Faculty of Science, Tanta University. 

  

1. Introduction 

It is well-known that the Lorenz system [1] 

which is an idealized model describing 

turbulent flow in the atmosphere. The 

atmosphere is just one of many 

hydrodynamical systems which exhibit a 

variety of solution behavior: some flows are 

steady, others oscillate between two or more 

states and still others vary in an irregular 

manner. This last class of behavior in a fluid is 

known as turbulence or in more general 

systems as chaos. 

Briefly, the original derivation of the model 

can be described as in [2]. A two-dimensional 

fluid cell is heated from below and cooled 

from above and the resulting convective 

motion is modeled by a system of ordinary 

differential equations as: 

 

                                                                      (1) 

 

where x, y and z are respectively, the variable x 

measures the convective velocity, the variable y 

measures the horizontal temperature variation 

and z represents the temperature difference 

between rising and falling flows. σ, b and the 

so-called bifurcation parameter r are positive 

real parameters. σ is proportional to Prandtl 

number (it involves the viscosity and thermal 

conductivity of the fluid), r is a control 
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parameter (it is proportional to the Rayleigh 

number) and b involves the coefficients of 

thermal expansion. These equations (1) led 

Lorenz to the discovery of sensitive dependence 

of initial conditions as an essential factor of 

unpredictability in many systems. Since that 

time, about 1963, the Lorenz system has 

become one of the most widely studied systems 

of ODES because of its wide range of behavior. 

Most of nonlinear systems do not have exact 

analytic solutions, so numerical and analytic 

approximation techniques must be used. Such as, 

4-th order Runge-Kutta method, variation 

iteration method [3, 4], Adomian decomposition 

method (ADM) [4, 5, 6], and the homotopy 

perturbation method (HPM) [7, 8]. The ADM 

can be applied to 

solve many linear or nonlinear differential 

equations. But one of its disadvantages is the 

inherent difficulty in calculating the Adomian 

polynomials. (HPM) overcomes the 

disadvantages of (ADM). The (HPM) was first 

proposed by Chinese mathematician He in 

(1998) [9]. The main idea of this method is to 

introduce a homotopy parameter p, p ∈ [0,1]. 

The perturbation methods have some 

limitations; for example, the approximate 

solution involves series of small parameters 

which poses difficulty since most of nonlinear 

problems have no small parameters at all. In 

contrast to the traditional perturbation methods, 

the (HPM) technique does not require a small 

parameter in an equation. Moreover, there is no 

need to the discretization of the variables. Using 

the method, we can easily get an analytical 

approximate solution to a wide range of 

nonlinear problems in applied sciences. In [10], 

the authors presented an algorithm based on 

(HPM) for solving a boundary-value problem, 

Gill et al. [11] studied the ion-acoustic solitons 

in a weakly relativistic electronpositronion 

plasma using (HPM), In [12], an inverse 

problem of diffusion equation was dealt with 

(HPM). The HPM yields a very rapid 

convergence of the solution series in most cases, 

usually only a few iterations leading to very 

accurate solutions. 

The pre-described model had been investigated 

before by many authors. Some authors studied 

the behavior of its solutions like [13, 14]. The 

lorenz system has been solved by the (ADM) [5]. 

Also, a fractional Lorenz system is dealt by the 

homotopy analysis method [15]. The model (1) 

with integer order derivatives was treated 

analytically by the (MHPM) method [16]. 

In this paper we apply the multistage homotopy 

perturbation method (MHPM) to solve Lorenz 

system with fractional order derivatives in the 

Caputo sense. Fractional derivatives play key 

role in modeling. Thus, Fractional Lorenz 

system may be introduced to provide a good 

simulation for the model. The (MHPM) is 

considered as a modification of the standard 

(HPM) [11]. In view of (MHPM), the (HPM) is 

treated as an algorithm in a sequence of 

subintervals for finding an accurate approximate 

solution to the corresponding Lorenz system. 

This paper is organized as follows: Section (2) 

is concerned with some definitions for the 

fractional calculus, Section (3) is devoted to the 

basic ideas of the (HPM) and (MHPM). In 

section (4), an application for the used 

technique with some comparisons are 

introduced. 

2. Preliminaries 

In this section we review some basic definitions 

in fractional calculus, and some of its properties 

[17]. 

Definition 1. The function f(x) is said to be in the 

space L1[a,b] if f(x) is Lebesgue integrable on 

[a,b].  

Definition 2. The Riemann-Liouville fractional 

integral operator of order α ≥ 0 of a function f(x) 

∈ L1 is defined by 

 

When a = 0, we can write . Some 

properties of the operator  can be found in [18].  

For f(x) ∈ L1,α,β ≥ 0 and γ > −1; we have 

1.  
 

2.  

 

3.  

 

Definition 3. The fractional derivative of order 

α(m−1 < α ≤ m) in the Caputo sense for a 

function f(x) ∈ L1 is defined as 
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Lemma 1 For α ∈ (m − 1, m), m ∈ N and f(x) ∈ 

L1, then 

 

 

 

3. The basic idea of the HPM 

In reviewing the basic idea of the (HPM) [19]. 

Consider a nonlinear differential equation 

L(u) + N(u) = f(r),   r ∈ Ω                                 (2)  

with boundary conditions 

                                       T                                      (3) 

where L is a linear operator, while N is a 

nonlinear operator, B is a boundary operator, Γ 

is the boundary of the domain Ω and f(r) is a 

known analytic function. 

Using the homotopy technique proposed by 

Liao in [20, 21], we construct a homotopy of Eq. 

(2) υ(r,p) : Ω × [0,1] → R which satisfies 

H(υ,p) = (1−p)[L(υ)−L(u0)]+p[L(υ)+N(υ)−f(r)] = 0 

(4) 

and which is equivalent to 

H(υ,p) = L(υ)−L(u0)+pL(u0)+p[N(υ)−f(r)] = 0 

(5) 

where p ∈ [0,1] is an embedding parameter and 

u0 is an initial approximation of Eq. (2) which 

satisfies the boundary conditions (3). It is clear 

that Eqs. (4), (5) give 

H(υ,0) = L(υ) − L(u0) = 0 (6) 

H(υ,1) = L(υ) + N(υ) − f(r) = 0 (7) 

The changing process of p from zero to unity is 

just that of υ(r,p) from u0(r) to u(r). In topology, 

this is called deformation, and L(υ) − L(u0), 

L(υ)+N(υ)−f(r) are called homotopic. The 

(HPM) assumes that the solution of Eq. (5) can 

be expressed as a power series in p; 

υ = υ0 + pυ1 + p
2
υ2 + p

3
υ3 + ..., (8) 

when p → 1, Eq. (5) corresponds to Eq. (4) and 

then Eq. (8) becomes the approximate solution 

of Eq. (2), i.e, 

u = lim υ = υ0 + υ1 + υ2 + υ3 + ...             (9)  

      p→1 

For the convergence of the series (9), see [7, 8]. 

It is worth mentioning that the operator L, and 

the initial approximation are freely chosen. 

3.1.The (HPM) for a system of fractional 

differential equations 

In this section, we extend the application of 

(HPM) to solve a system of fractional order 

differential equations of the form: 

D
αi

yi = fi(t,y1,y2,··· ,yn)                                   (10) 

with the initial condition: 

 

where fi’s are linear or nonlinear functions and 

mi < αi ≤ mi + 1,   mi = 0,1,2,··· 

Following the approach given for the (HPM) in 

[7, 8], we construct a homotopy for the Eq. (10) 

which satisfies the following relations: 

D
αi

yi = pfi(t,y1,y2,··· ,yn)                                  (11) 

where i = 1,2,··· ,n, p ∈ [0,1]. As mentioned 

before, the basic assumption is that the solution 

of Eq. (10) can be expanded as a power series in 

p as:  

yi(t) = yi0 + pyi1 + p
2
yi2 + ...                            (12) 

and the initial conditions can be written as 

 

(13) 

The nonlinear functions fi’s can be decomposed 

as 
                                                                       (14) 

 

where Hin’s are called He polynomials that 

defined by [22] as 

 

 

(15) 
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Substituting Eq. (12) and Eq. (14) into Eq. (11) 

and collecting the terms of the same powers of p, 

we obtain 

p
0 

:  

p
1 

:  

p
2 

:  

p
3 

: 

D
αi

yi0 

D
αi

yi1 

D
αi

yi2 

D
αi

yi3 

= 0 

= Hi1(t,y10,y20,··· ,yn0)              (16) 

= Hi2(t,y10,y20,··· ,yn0,y11,y21,··· ,yn1) 

= Hi3(t,y10,··· ,yn0,··· ,yn1,··· ,yn2) 

  

Applying the integral operator    
 ̃ (    

 ̃ means 

integration from t0 to t) for both sides of the Eqs. 

(16) with the initial conditions (13) hence, the 

unknown function yij(t) can be determined. By 

setting p =1 in (12), the HPM serious solutions 

to Eq. (11) are given as 

 

 

So, the m-approximations of the (HPM) series 

solution can be expressed as 

                                                                   (17) 

 
3.2.The concept of the (MHPM) 

Unfortunately, (HPM) gives a good 

approximation only in a neighborhood of the 

initial time. The (MHPM) modification is 

introduced to improve this defect. This 

modification was introduced by M. Chowdhur 

in (2009) [23]. According to the technique of 

(MHPM), the (HPM) is treated as an algorithm 

in a sequence of intervals for finding accurate 

approximate solution to Eq. (11). So, the time 

interval [0; t) can be divided into a sequence of 

subintervals [t0; t1]; [t1; t2]; ; [tj-1; tj], in which 

t0 = 0, tj = t. Every subinterval can be chosen to 

have the same length ∆t. Thus, if we denote to 

the initial time of every subinterval with t*, the 

initial approximations take the form 
 

where t* is the left-end point of each subinterval, 

k represents the number of the current 

subinterval and when k = 1, t* = t0. Therefore, 

the series solution in every subinterval becomes 

in the form 

                                                                         

                                                                       (18) 

4. Applications 

In this section, we study the lorenz system (1) in 

case of replacing the first order derivative in 

time by the Caputo fractional derivative of order 

α, (0 < α ≤ 1) as 

 

                                                                                     (19) 

 

where D = 
 

  
, subject to the initial conditions 

                                                                       (20) 

 

According to the (HPM)(back to section (3.1)), 

by collecting the terms of the same powers of p, 

the Eqs. (19) is turned to an infinite number of 

linear systems of triple fractional differential 

equations as follows: 

p
0 

:  

 

 

p
1 

:  

 

 

p
2 

:  

D
α
x0(t) 

D
α
y0(t) 

D
α
z0(t) 

D
α
x1(t) 

D
α
y1(t) 

D
α
z1(t) 

D
α
x2(t) 

D
α
y2(t) 

D
α
z2(t) 

= 0 

= 0               

= 0  

= σ(y0(t) − x0(t)) 

= rx0(t) − y0(t) − x0(t)z0(t)           (21) 

= −bz0(t) + x0(t)y0(t) 

= σ(y1(t) − x1(t)) 

= rx1(t) − y1(t) − x0(t)z1(t) − x1(t)z0(t) 

= −bz1(t) + x1(t)y0(t) + x0(t)y1(t) 

  
and so on for p

3
, p

4
,   . with the initial 

conditions 

x0(t∗) = x(t∗) = a0; y0(t∗) = y(t∗) = b0; z0(t∗) = z(t∗) = c0 

xi(t∗) = 0;  yi(t∗) = 0;  zi(t∗) = 0,i = 1,2,3,...           (22) 

and so on. 

Now we solve the above systems (21) for the 

unknown xm(t), ym(t) and zm(t) by applying the 

inverse operator I
α
, (0 < α ≤ 1), where the series 

solutions are considered as 

  ( )  ∑   ( )
 

   
,  ( )  ∑   ( )

 

   
 and 

 ( )  ∑   ( )
 

   
. 
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Therefore, the mth term approximation for the 

solutions of (19) can be expressed as 

 

 

 

                                                                       (23) 

 

 

 

where the coefficients take the form 

 

 

 

(24) 

To carry out the used technique in every 

subinterval of equal length ∆t, [0; t1); [t1; t2); 

[t2; t3);   [tn-1; t), we need to know the values 

of the following initial conditions for every 

subinterval: 

a0 = x(t∗),  b0 = y(t∗),  c0 = z(t∗)           (25) 

In general, we don't have these information at 

our clearance except at the initial point t
*
 = t0 = 

0 but we can obtain these values by using the 

(MHPM) as given in Section (3.2). 

 

4.1.Results and discussion 

Following the studies of Lorenz, he chose σ = 

10 (a realistic value for water) and b = 8/3. For 

comparison with Chowdhury et al. [23], we take 

the initial conditions as x(0) = -15.8, y(0) = -

17.48 and z(0) = 35.64 at the standard case (α = 

1). For the system (1), it is well known that the 

value r = 
 (     )

     
 is critical value for the 

chaos sets [1, 2]. So, in this case the critical 

value is r = 24.74. Thus, for comparison, we 

shall consider two cases: r = 28 where the 

system exhibits chaotic behavior and r = 23.5 

where the system is non-chaotic. 

4.1.1. Chaotic solutions 

At first, we consider the chaotic case when r = 

28 with the parameters σ and b as given above. 

The (MHPM)-series solutions of chaotic system 

(19) for t with x(t), y(t) and z(t) when α change 

from 1 to 0:99 are plotted in Fig. (1). The phase 

portraits of xyz when α = 1, 0.99 and 0.97 

respectively, using 10-term (MHPM) with ∆t = 

0.01 in the time domain [0; 20] are obtained as 

presented in Fig. (2). In Fig. (2a), (2b) and (2c), 

the solutions agree with the solutions in [23] 

when α = 1. But, they are different when the 

derivative order α is changed. 

In table (1), we present the absolute errors 

between the 10-term (MHPM) solutions and the 

10-term HPM solutions and the (RK4) solutions 

on time step h = 0.01 and α = 1 for r = 28. 

 

 
 

 

 

Figure (1): MHPM solutions for chaotic case of 

fractional Lorenz system in the standard case and 

when α = 0.99. (a) Time response of x(t); (b) Time 

response of y(t) and (c) Time response of z(t). 
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Figure (2): Phase portraits using 20-term MHPM on ∆t = 0.01 for r = 28 when (a)Phase portrait for chaotic case when α = 1; 

(b)Phase portrait for chaotic case when α = 0.99; (c)Phase portrait for chaotic case when α = 0.97. 

Table (1): Differences between 10-term HPM and 10-term MHPM with RK4 solutions for r = 28, α = 1 

 

4.1.2. Non- chaotic solutions 

Now, we consider the non-chaotic case when r = 

23.5 with the other parameters σ and b as given 

before. The (MHPM)-series solutions of chaotic 

system (19) for t with x(t), y(t) and z(t) when α 

change from 1 to 0.99 are plotted in Fig. (3). 

The phase portraits of xyz when α = 1; 0.99 and 

0.95, respectively, using 10-term (MHPM) with 

∆t = 0.01 in the time domain [0,20] are obtained 

as presented in Fig. (4). In Fig. (4a) the solution 

agrees with (MHPM) solution in [23], while in 

Fig. (4b) and (4c), they are different when the 

derivative order α. 

 

 

 

 

 

 

 

 

 

 

 
 Figure (3): MHPM solutions for non-chaotic case of 

fractional Lorenz system when α = 1, 0.99. (a) Time 

response of x(t); (b) Time response of y(t) and (c) 

Time response of z(t). 
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Figure (4): MHPM solutions for non chaotic cases of fractional Lorenz system when (a) α = 1; (b) α = 0.99; (c) α = 0.95. 

Table (2): Differences between 10-term HPM and 10-term MHPM with RK4 solutions for r = 23.5, α = 1  

 

For a comparison between HPM and (MHPM) 

with the numerical method (RK4) in case of the 

integer order α = 1 for r = 23:5, the absolute 

errors between the 10-term (MHPM) solutions 

and the 10-term HPM solutions and the (RK4) 

solutions are considered in the following table 

(2). 

5. Conclusions 

The main aim of this work is to use the 

multistage homotopy perturbation method 

(MHPM) which is a modification to the 

standard (HPM) to solve the fractional Lorenz 

system. The numerical comparison between the 

solutions of (MHPM) and (HPM) with the 

fourth order Runge-Kutta method (RK4) tells us 

that the solutions obtained by the standard 

(HPM) aren't valid for a long time. While the 

solutions obtained by the (MHPM) are highly 

accurate for a longtime, usually only a few 

approximations leading to very accurate 

solutions. So, the (MHPM) is reliable and 

effective tool moreover, it is very easy to apply. 
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