Mansoura University.
Faculty of Engineering.
Electrical Engineering Dept.

Renewable Energy Systems. Time allowed: Three Hrs.

Date: 8 -9-2013.

Final Examination ---- Preliminary Course of Master Degree.

Answer All Following Questions.

رجاء ممنوع استعمال القلم الرصاص في الحل (يستعمل فقط في الرسومات التوضيحية).

First Question:

- 1-a) Show the importance of the *I-V* curves of the PV cells, and demonstrate the following:
 - i) The practical electrical circuit used in deducing I-V curve, and the important points on it,
 - ii) Basic construction of the PV cell, module, and array,
 - iii) Equivalent electrical circuit of PV cell and the mathematical model used in executing the *I-V* relations, and
 - iv) The factors affecting the *I-V* curves.

(10 marks)

1-b) Discuss the Kelly cosine curve and the factors used into consideration in deducing the "Array Design" and the methods used in achieving the peak power point operation. (5 marks)

Second Question:

2-a) Demonstrate the essential advantages of the photovoltaic power.

(5 marks)

2-b) In the PV cells technologies, explain the single-crystalline silicon, poly crystalline and semi crystalline.

Demonstrate the single-crystalline making by Czochrolski, Amorphous silicon, and concentrated cells.

(10 marks)

Third Question:

3-a) Prove that the power in the wind is: $P_W = \frac{1}{2} \rho A V^3$, and the power extracted by the wind turbine = $C_p P_W$.

Find the relation of : $C_p = f(V, V_o)$

(5 marks)

- 3-b) i) Show graphically the relation of C_p vs. (V_o/V) ratio and the maximum practical value of C_p and the ratio of (V_o/V) at C_{pmax} .
 - ii) Show graphically the rotor efficiency vs. tip speed ratio at different number of blades, and the number of blades achieving the highest efficiency.

 (10 marks)
- **3-c)** Demonstrate the Weibull probability distribution function at specific value of scale parameter "C" and shape parameter of K=1, 2, and 3. (5 marks)
- 3-d) Explain the probability distribution with shape parameter K=2 and the scale parameter ranging from 8 to 16 mile/hr.

 (5 marks)

Fourth Question:

- **4-a)** Show and demonstrate the principle operation of the grid-connected P.V power system, and the grid-connected wind power system.

 (10 marks)
- 4-b) Draw the electrical components layout of the grid-connected wind turbine power system.

(5 marks)

4-c) Discuss the vital importance of the synchronizing with grid.

(5 marks)

Fifth Question:

5-a) Show the synchronizing circuit using three synchronizing lamps or the synchronoscope.

(5 marks)

- 5-b) Discuss the synchronizing process specifically runs for the wind turbine generator, and remember the advantages and disadvantages of the inrush current.

 (10 marks)
- 5-c) Explain the operation limit of the renewable power plant connected to grid via transmission line link using the equivalent circuit.

 (5 marks)
- 5-d) Prove that the maximum efficiency of a power system is achieved when: $L_o = KP^2$ where $L_o = Fixed loss$ and $KP^2 = variable loss$.

Good Luck.

Prof. Dr. Mohamed Adel El-Sayes

Page 2 of 2