E-mail: scimag@mans.edu.eg
ISSN: 2974-4946

Classes of harmonic starlike functions defined byRuscheweyh-type q-differential operators

M. A. Mowafy ${ }^{1}$, A. O. Mostafa ${ }^{1}$ and S. M. Madian ${ }^{3}$
1,2 Dept. of Mathematics, Faculty of Science, Mansoura University, Egypt
${ }^{3}$ Basic Science Dept. Higher Institute of Eng. Tec, New Damietta, Egypt).
* Correspondence to: (${ }^{1}$ mohamed1976224@gmail.com, tel:010031172805)

 Abstract :Sufficient and necessary coefficient bounds and other properties are obtained for a class of $M \delta_{q}^{m}(\tau, \gamma, \alpha)$, extreme points of closed convex hulls, and distortion theorems are determined for a family of harmonic starlike functions of complex order involving Ruscheweyh-type q-differential operator.
keywords: Harmonic univalent functions, q-calculus, Ruscheweyh-type differential operator and distortion theorems

Introduction

Let Λ be the class of functions:
$h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$,
which are analytic in $U=\{z: z \in \mathrm{C} .|z|<$ $1\}$. Also let δ denote the subclass of Λ consisting of univalent functions in U.

For h given by (1.1) and g given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

the Hadamard product
(Or convolution) is
$(h * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$.
For $h \in \delta .0<q<1$, the q-derivative operator ∇_{q} is given by
(Jackson [7]) and other authors studied qderivative operator ∇_{q} such as ([1-5], [10]).

$$
\nabla_{q} h(z)= \begin{cases}\frac{h(z)-h(q z)}{(1-q) z} & , z \neq 0 \\ h^{\prime}(z) & , z=0\end{cases}
$$

that is

$$
\nabla_{q} h(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1}
$$

where

$$
\begin{gathered}
{[k]_{q}=\frac{1-q^{k}}{1-q}} \\
{[k]_{q}=0 .}
\end{gathered}
$$

(Kannas and Rǎducanu [9])
introduced and investigated the Ruscheweyh type q- differential operator

$$
\begin{aligned}
& \quad R_{q}^{m} h(z)=h(z) * F_{q, m_{+} 1}(z)=z+ \\
& \sum_{k=2}^{\infty} X_{q}(k, m) a_{k} z^{k}, m>-1,
\end{aligned}
$$

where

$$
\begin{equation*}
\left.F_{q, m+1}(z)=z+\sum_{k=2}^{\infty} X_{q}(k, m)\right) z^{k} . \tag{1.4}
\end{equation*}
$$

and $X_{q}=\frac{\Gamma_{q}(k+m)}{(k-1)!\Gamma_{q}(k+m)}$.

Observe that

$$
\begin{array}{r}
R_{q}^{0} h(z)=h(z) \\
R_{q}^{1} h(z)=z \nabla_{q} h(z) \ldots \\
R_{q}^{m} h(z)=\frac{z \nabla_{q}^{m}\left(z^{m-1} h(z)\right)}{m!}=z+ \\
\sum_{K=2}^{\infty} X_{q}(k, m) a_{k} z^{k} . \tag{1.5}
\end{array}
$$

Let M be the family of harmonic functions $\quad f=h+\bar{g}$ that are orientation preserving and univalent in U where h as in (1.1) and

$$
\begin{equation*}
g(z)=\sum_{k=1}^{\infty} b_{k} z^{k},\left.\right|_{b_{1}} \mid<1 \tag{1.6}
\end{equation*}
$$

and $\quad \bar{M} \subset M$ consisting of $f=h+\bar{g}$ where
$h(z)=z-\sum_{k_{=2}}^{\infty} a_{k} z^{k}, g(z)=$
$\sum_{k_{=1}}^{\infty} b_{k} z^{k}, \quad a_{k} \geq 0$ and $b_{k} \geq 0$.
For $f \in M . R_{q}^{m} g(z)$, be defined by

$$
\begin{gather*}
R_{q}^{0} g(z)=g(z) \\
R_{q}^{1} h(z)=z \nabla_{q} g(z) \ldots \\
R_{q}^{m} g(z)=\frac{z_{\nabla}{ }_{q}^{m}\left({ }_{z} m_{-1} g(z)\right)}{m_{z}}=z+ \\
\sum_{k=1}^{\infty} X_{q}(k, m) b_{k} z^{k}! \tag{1.8}
\end{gather*}
$$

Recently, (Jahangiri [8]) applied qdifference operators to classes of harmonic functions and obtained coefficient bounds for such functions. Motivated by ([8] and [9]), we define the class $M_{q}^{m}(\alpha)$ of Ruscheweyhtype $q \&$ calculus harmonic functions $M_{q}^{m}(\alpha)$ consisting of $f \in M$ satisfying

$$
\operatorname{Re}\left(\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}\right) \geq \alpha ; 0 \leq \alpha \leq 1
$$

where $R_{q}^{m} h(z)$ and $R_{q}^{m} g(z)$ are, respectively, given by (1.5), (1.8) and

$$
\begin{align*}
& \quad R_{q}^{m} f(z)= \\
& R_{q}^{m} h(z)+(-1)^{m} \overline{R_{q}^{m} g(z)}, m>-1 \tag{1.9}
\end{align*}
$$

The subfamily $\bar{M}_{q}^{m}(\alpha) \subset M_{q}^{m}(\alpha)$ consists of harmonic functions $f=h+\bar{g}_{m}$ for which

$$
h(z)=z-\sum_{k_{=2}}^{\infty} a_{k} z^{k}, g_{m}(z)=
$$

$\left(\begin{array}{l}(1.10)\end{array}\right)_{k=1}^{m} b_{k} z^{k}, a_{k} \geq 0$ and $b_{k} \geq 0$.

Definition 1:

For non-zero complex number τ with $|\tau| \leq 1 . \gamma \in \mathbb{R}$ and $0 \leq \alpha \leq 1 \quad$ let $M \delta_{q}^{m}(\tau . \gamma . \alpha)$ be the subclass of $f \in M$ satisfying

$$
\begin{align*}
& \quad \operatorname{Re}\left\{1+\frac{1}{\tau}\left[\left(1+e^{i \gamma}\right) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-\right.\right. \\
& \left.\left.\left(1+e^{i \gamma}\right)\right]\right\}>\alpha \quad(1.11) \tag{1.11}\\
& \text { and }
\end{align*}
$$

$$
\overline{M \delta}_{q}^{m}(\tau, \gamma, \alpha) \subset M \delta_{q}^{m}(\tau, \gamma, \alpha) \cap \bar{M}
$$

Note that:

$(i) M \delta_{q}^{m}(1, \gamma, \alpha) \equiv M \delta_{q}^{m}(\gamma, \alpha)^{\mathbf{6}}$ see [11])
$: \operatorname{Re}\left[\left(1+e^{i \gamma}\right) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-e^{i \gamma}\right]>\alpha$.
$\left.{ }_{i i}\right) M \delta_{q}^{m}(\tau, 0, \alpha) \equiv M \delta_{q}^{m}(\tau, \alpha) \quad$ (see
Definition1) :

$$
\operatorname{Re}\left[1+\frac{2}{\tau}\left(\frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-1\right)\right]>\alpha
$$

2 M ain section

Unless otherwise mentioned we shall assume that $|\tau| \leq 1, \gamma \in \mathbb{R} .0 \leq \alpha \leq 1, m>$ $-1,0<q<1$ and $X_{q}(k, m) \quad$ is given by (1.4).

Theorem 2.1. For $f \in M$. If

$$
\sum_{k=1}^{\infty}\left[\begin{array}{l}
\frac{\frac{2[k+m] q}{[1+m] q}+2-(1-\alpha)|\tau|}{(1-\alpha)|\tau|} x_{q}(k, m)\left|a_{k}\right| \\
+\frac{\frac{2[k+m] q}{[1+m] q}-2+(1-\alpha)|\tau|}{(1-\alpha)|\tau|}
\end{array} x_{q}(k, m)\left|b_{k}\right|\right] \leq
$$

2 (2.1)
then f is orientation-preserving harmonic univalent in U and $f \in M \delta_{q}^{m}(\tau, \gamma, \alpha)$.
Proof.
Let (2.1) hold, first we prove that f orientation-preserving in U it is sufficient to show that $\left|R_{q}^{m} h(z)\right| \geq\left|R_{q}^{m} g(z)\right|$.

$$
\begin{aligned}
& \left|R_{q}^{m} h(z)\right| \geq 1-\sum_{k=2}^{\infty} X_{q}(k, m+1)\left|a_{k}\right| r^{k-1} \\
& >1-\sum_{k=2}^{\infty} X_{q}(k, m+1)\left|a_{k}\right| . \\
& \geq 1 \\
& -\sum_{k=2}^{\infty}\left\{\frac{\frac{2[k+m]_{q}}{\left[1+m_{] q}\right.}-2+(1-\alpha)|\tau|}{(1-\alpha)|\tau|} X_{q}(k, m)\left|a_{k}\right|\right\} \\
& \geq \sum_{k=1}^{\infty}\left\{\frac{\frac{2[k+m]_{q}}{\left[1+m_{] q}\right.}+2-(1-\alpha)|\tau|}{(1-\alpha)|\tau|} X_{q}(k, m)\left|b_{k}\right|\right\} \\
& \geq \sum_{k=1}^{\infty} X_{q}(k, m+1)\left|b_{k}\right| \\
& \geq \sum_{k=1}^{\infty} X_{q}(k, m+1)\left|b_{k}\right| r^{k-1} \geq\left|R_{q}^{m} g(z)\right|
\end{aligned}
$$

If $z_{1} \neq z_{2}$ then

$$
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right|
$$

$$
=1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{1}{ }^{k}-z_{2}{ }^{k}\right)}{\left(z_{1}-z_{2}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}{ }^{k}-z_{2}^{k}\right)}\right|
$$

$$
>1-\frac{\sum_{k=1}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=2}^{\infty} k\left|a_{k}\right|}
$$

$$
\left.\geq 1-\frac{\frac{\frac{2[k+m] q}{[1+m] q}+2-(1-\alpha)|\tau|}{(1-\alpha)|\tau|}}{\frac{2[k+m] q}{}-2+(1-\alpha)|\tau|} X_{q}(k, m)\left|b_{k}\right|\right]
$$

This gives the univalence of f.
Finally, we prove that $f \in M \delta_{q}^{m}(\tau, \gamma, \alpha)$.
Using the fact that,

$$
\begin{aligned}
\operatorname{Re}(\omega(z)) \geq \alpha & \Leftrightarrow|1-\alpha+\omega| \\
& \geq|1+\alpha-\omega|
\end{aligned}
$$

we may show that

$$
\mid\left[2 \tau-\alpha \tau-\left(1+e^{i \gamma}\right)\right]\left[R_{q}^{m} h(z)+\right.
$$

$$
\left.(-1)^{m} \overline{R_{q}^{m} g(z)}\right]\left(1+e^{i \gamma}\right)\left[R_{q}^{m+1} h(z)-\right.
$$

$$
(-1)^{m} \overline{\left.R_{q}^{m+1} g(z)\right]}|-|(1+\alpha \tau+
$$

$\left.e^{i \gamma}\right)\left[R_{q}^{m} h(z)+(-1)^{m} \overline{R_{q}^{m} g(z)}\right]-$
$\left(1+e^{i \gamma}\right)\left[R_{q}^{m+1} h(z)-\right.$
$\left.(-1)^{m} \overline{R_{q}^{m+1} g(z)}\right] \mid \geq 0$.
$\mid\left[2 \tau-\alpha \tau-\left(1+e^{i \gamma}\right)\right][z+$ $\sum_{k=2}^{\infty} X_{q}(k, m) a_{k} z^{k}+$ $\left.(-1)^{m} \sum_{k=1}^{\infty} X_{q}(k, m) b_{k} \bar{z}^{k}\right]+$ $\left(1+e^{i \gamma}\right)\left[z+\sum_{k=2}^{\infty} X_{q}(k, m+\right.$ 1) $a_{k} z^{k}-(-1)^{m} \sum_{k=1}^{\infty} X_{q}(k, m+$

1) $\left.b_{k} \bar{z}^{k}\right]|-|\left(1+\alpha \tau+e^{i \gamma}\right)[z+$
$\sum_{k=2}^{\infty} X_{q}(k, m+1) a_{k} z^{k}+$
$\left.(-1)^{m} \sum_{k=1}^{\infty} X_{q}(k, m+1) b_{k} \bar{z}^{k}\right]-$
$\left(1+e^{i \gamma}\right)\left[z+\sum_{k=2}^{\infty} X_{q}(k, m) a_{k} z^{k}-\right.$
$\left.(-1)^{m} \sum_{k=1}^{\infty} X_{q}(k, m) b_{k} \bar{z}^{k}\right] \mid \geq$
$(2-\alpha)|\tau||z|$

$$
-\sum_{k=2}^{\infty} \left\lvert\,(2-\alpha) \tau+\left(1+e^{i \gamma}\right)\left(\frac{[k+m]_{q}}{\left[1+m_{] q}\right.}+\right.\right.
$$

1) $(2-\alpha) \tau\left|X_{q}(k . m)\right| a_{k}| | z^{k} \mid-$
$\sum_{k=1}^{\infty} \left\lvert\,\left(1+e^{i \gamma}\right)\left(\frac{\left[k+m_{q q}\right.}{\left[1+m_{] q}\right.}+1\right)-\right.$
$(2-\alpha) \tau\left|X_{q}(k, m)\right| b_{k}| | z^{k} \mid$

$$
\begin{gathered}
-\alpha|\tau||z|-\sum_{k=2}^{\infty} \left\lvert\,\left(1+e^{i \gamma}\right)\left(\frac{[k+m]_{q}}{\left[1+m_{] q}\right.}-1\right)\right. \\
-\alpha \tau\left|X_{q}(k . m)\right| a_{k}| | z^{k} \mid
\end{gathered}
$$

$-\alpha|\tau||z|-\sum_{k=2}^{\infty} \left\lvert\,\left(1+e^{i \gamma}\right)\left(\frac{[k+m]_{q}}{\left[1+m_{] q}\right.}-1\right)\right.$
$-\alpha \tau$
$X_{q}(k . m)\left|a_{k}\right|\left|z^{k}\right|$
$-\sum_{k=1}^{\infty} \left\lvert\,\left(1+e^{i \gamma}\right)\left(\frac{[k+m]_{q}}{\left[1+m_{] q}\right.}\right.\right.$
$+1)+\alpha \tau\left|X_{q}(k, m)\right| b_{k}| | z^{k} \mid$.
$\geq 2(1-\alpha)|\tau||z|\{2$
$-\sum_{k=1}^{\infty} \frac{\frac{2[k+m] q}{\left[1+m_{] q}\right.}-2+(1-\alpha)|\tau|}{(1-\alpha)|\tau|} X_{q}(k, m)\left|a_{k}\right|$
$+\sum_{k=1}^{\infty} \frac{\frac{2[k+m]_{q}}{\left[1+m_{1 q}\right.}+2-(1-\alpha)|\tau|}{(1-\alpha)|\tau|} X_{q}(k, m)\left|b_{k}\right|$.

$$
\geq 0
$$

This completes the proof.
The function

$$
\begin{aligned}
& f(z)=\sum_{k=2}^{\infty} \frac{(1-\alpha)|\tau|}{\frac{2[k+m]_{q}}{11+m q_{q}}-2+(1-\alpha)|\tau|} x_{k^{z^{k}}}+ \\
& +\sum_{k=1}^{\infty} \frac{(1-\alpha)|\tau|}{\frac{2[k+m]_{q}}{[1+m]_{q}}-2+(1-\alpha)|\tau|} \bar{y}_{k^{\bar{z}^{k}}}
\end{aligned}
$$

Where $\sum_{k=1}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$,which give the charppness for (2.1).
Theorem 2.2. Let $f_{m}=h+\bar{g}_{m}$
given by (1.10), $\mathrm{a}_{1}=1$ Then f_{m} is orientation-preserving harmonic univalent in U and $f_{m} \in M_{q}^{m}$.if and only if

$$
\sum_{k=1}^{\infty}\left[\begin{array}{l}
\frac{\frac{2[k+m]_{q}}{[1+m]_{q}}-2+(1-\alpha)|\tau|}{(1-\alpha)|\tau|} x_{q}(k . m) a_{k} \\
+\frac{2[k+m]_{q}}{[1+m]_{q}}-2+(1-\alpha)|\tau| \\
(1-\alpha)|\tau|
\end{array} x_{q}(k . m) b_{k}\right] \leq
$$

2. (2.2)

Proof. Since $\bar{M}_{q}^{m}(\tau, \gamma, \alpha) \subset M_{q}^{m}(\tau, \gamma, \alpha)$,
then first part hold from theorem 2.1. The second part, we will show that if (2.2) does not hold then $f_{m} \notin \bar{M}_{q}^{m}(\tau, \gamma, \alpha)$.

For $f_{m} \notin \bar{M}_{q}^{m}(\tau, \gamma, \alpha)$.

$$
\operatorname{Re}\left\{\frac{1}{\tau}\left[\left(1+e^{i \gamma}\right) \frac{1+}{R_{q}^{m+1} f(z)} R_{q}^{m} f(z) ~\left(1+e^{i \gamma}\right)\right]\right\} \geq
$$

α.
Or equivalently
Re

Re
$\left\{\frac{(-1)^{2 n} \sum_{k=1}^{\infty}\left[\frac{\left[\left(\frac{[k+m] q}{[1-m] q}-1\right)\left(e^{i \gamma}+1\right)-(1-\alpha) \tau\right]}{\tau} X_{q}(k, m) a^{k} z^{k}\right.}{\tau\left[z-\sum_{k=2}^{\infty} X_{q}(k, m) a^{k 2^{k}}+(-1)^{2 m} \sum_{k=1}^{\infty} X_{q}(k, m) a^{k} \bar{z} k\right]}\right\}$
$=$
Re\{
$\left.\left\{\frac{(1-\alpha)|\tau|^{2}-\sum_{k=2}^{\infty}\left[(1-\alpha) \tau+\left(\frac{[k+m] a}{[1-m] q}-1\right)\left(e^{i \gamma}+1\right)\right] X_{q}(k, m) a^{k}}{|\tau|^{2}\left[1-\sum_{k=2}^{\infty} X_{q}(k, m) a^{k} z^{k-1}+\frac{\bar{Z}}{Z} \sum_{k=1}^{\infty} X_{q}(k, m) a^{k} \bar{Z} k-1\right.}\right]\right\}$
Re
$\left\{\frac{\frac{\bar{z}}{z} \sum_{k=2}^{\infty}\left[(1-\alpha) \tau+\left(\frac{[k+m] a}{[1-m] q}-1\right)\left(e^{i \gamma}+1\right)\right] X_{q}(k, m) a^{k} z^{k-1}}{|\tau|^{2}\left[1-\sum_{k=2}^{\infty} X_{q}(k, m) a^{k} z^{k-1}+\frac{\bar{z}}{\bar{z}} \sum_{k=1}^{\infty} X_{q}(k, m) a^{k} \bar{z}^{k-1}\right]}\right\} \geq$ 0

The above condition must hold $\forall \gamma,[z]=$ $r<1$ and $0<|\tau|<1$. for $\gamma=0$ and $|\tau|=$ τ let $0<z=r<1$. then (2.3)becomes

$$
\begin{aligned}
& \frac{(1-\alpha)|\tau|^{2}-\sum_{k=2}^{\infty}\left[\left(\frac{2[k+m] q_{q}}{[1-m] q}-2\right)(1-\alpha) \tau\right]|\tau| X_{q}(k, m) a^{k} z^{k-1}}{|\tau|^{2}\left[1-\sum_{k=2}^{\infty} X_{q}(k, m) a^{k 2^{k-1}}+\sum_{k=1}^{\infty} X_{q}(k, m) a^{k \bar{z}^{k-1}}\right]} \\
& -\frac{\sum_{k=1}^{\infty}\left[\left.\left(\frac{2[k+m] q}{[1-m] q}+2\right)(1-\alpha) \tau| | \tau \right\rvert\, X_{q}(k . m) a^{k} z^{k-1}\right.}{\left.\mid 1-\sum_{k=2}^{\infty} X_{q}(k, m) a^{k} z^{k-1}+\sum_{k=1}^{\infty} X_{q}(k, m) a^{k} z^{k-1}\right]} \geq
\end{aligned}
$$ 0

Observer that the numerator in)2.3) is negative if (2.2) does not holt. Thus \exists appoint $z_{0}=r_{0}$ in (0.1) for which (2.4) is negative, which contradicts (1.11) for $f_{m} \epsilon \bar{M} \delta_{q}^{m}(\tau, \gamma, \alpha)$. hence the proof is completed.

Theorem 2.3. Let f_{m} be given by (1.10), then it is orientation preserving harmonic univalent in U and $f_{m} \epsilon \bar{M} \delta_{q}^{m}(\tau . \gamma . \alpha)$ if and only
if $\sum_{k=1}^{\infty}\left[\begin{array}{c}\frac{2[k+m]_{q}}{\frac{[1+m]}{}}-2+(1-\alpha) \\ (1-\alpha)\end{array} X_{q}(k, m)_{a_{k}}\right] \leq 2$.
Theorem 2.4. let fm be given by (1.10), then $f_{m} \epsilon c l c o \bar{M} \delta_{q}^{m}(\tau \cdot \gamma . \alpha)$ if and only if

$$
\begin{equation*}
f_{m}=\sum_{k=1}^{\infty}\left(x_{k} h_{k}+Y_{k} g_{m_{k}}\right), \tag{2.5}
\end{equation*}
$$

Where

$$
\begin{aligned}
& h_{1}(z)=z, h_{k}(z)= \\
& z-\sum_{k=2}^{\infty} \frac{X_{q}(k \cdot m)\left[\frac{[k+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|} z^{k}, k= \\
& 2,3, \ldots ; \\
& \quad, g_{m_{k}}(z)= \\
& z+(-1)^{m} \frac{(1-\alpha)|\tau|}{x_{q}(k \cdot m)\left[\frac{2[k+m] q}{[1+m] q}+2-(1-\alpha)[\tau]\right.} \bar{z}^{k}
\end{aligned}
$$

, $\mathrm{k}=1,2, \ldots$;
$\sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right)=1, X_{k} \geq 0$ and $Y_{k} \geq 0$
In particular , the extreme points of clco $\bar{M} \delta_{q}^{m}(\tau, \gamma, \alpha)$ are $\left\{h_{k}\right\}$ and $\left\{g_{m_{k}}\right\}$

Proof. Assume that f_{m} as in (2.5),then

$$
f_{m}=\sum_{k=1}^{\infty}\left(X_{k} h_{k}+Y_{k} g_{m_{k}}\right) \quad=
$$

$\sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right) z$

$$
\begin{aligned}
& -\sum_{k=2}^{\infty} \frac{(1-\alpha)|\tau|}{X_{q}(k, m)\left[\frac{[\mid k+m]_{q}}{(1+m) q}-2+(1-\alpha)|\tau|\right]} X_{k^{z^{k}}} \\
& +(-1)^{m} \sum_{k=2}^{\infty} \frac{(1-\alpha)|\tau|}{x_{q}(k, m)\left[\frac{[\mid k+m] q}{(1+m) q}+2-(1-\alpha)|\tau|\right]} \bar{z}^{k}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{X_{q}(k, m)\left[\frac{2[k+m]_{q}}{(1+m q}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|} \\
& \left\{\frac{(1-\alpha)|\tau|}{X_{q}(k, m)\left[\frac{2[k+m]_{q}}{(1+m)_{q}}-2+(1-\alpha)|\tau|\right]}\right\} X_{k} \\
& +\sum_{k=2}^{\infty} \frac{X_{q}(k, m)\left[\frac{2[k+m]_{q}}{(1+m)_{q}}+2-(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|} \\
& \left\{\frac{(1-\alpha)|\tau|}{X_{q}(k, m)\left[\frac{2[k+m]_{q}}{(1+m)_{q}}+2-(1-\alpha)|\tau|\right]}\right\} Y_{k}
\end{aligned}
$$

$$
=\sum_{k=2}^{\infty} X_{k}+\sum_{k=1}^{\infty} Y_{k}=1-X_{1} \leq 1 .
$$

Thus $f_{m} \epsilon c l c o \bar{M} \delta_{q}^{m}(\tau, \gamma, \alpha)$.
Conversely, suppose that $f_{m} \epsilon c l c o \bar{M} \delta_{q}^{m}(\tau, \gamma, \alpha)$.

Set
$X_{k}=\frac{X_{q}(k, m)\left[\frac{2[k+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|a_{k}\right|, k=$ $2,3, \ldots$,
and
$Y_{k}=\frac{X_{q}(k, m)\left[\frac{2[k+m] q}{(1+m) q}+2-(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|b_{k}\right|, k=$ $1,2, \ldots$,

Where $\sum_{k=2}^{\infty}\left(X_{k}+Y_{k}\right)=1$. Then
$f_{m}=$
$z-\sum_{k=2}^{\infty} a_{k} z^{k}+(-1)^{m} \sum_{k=2}^{\infty} b_{k} \bar{z}^{k}=z-$
$\left.\sum_{k=2}^{\infty} \frac{(1-\alpha)|\tau|}{X_{q}(k, m)} \frac{\left[\mid k+m q_{q}\right.}{(1+m)_{q}}-2+(1-\alpha)|\tau|\right] \quad X_{k} z^{k}+$
$(-1)^{m} \sum_{k=1}^{\infty} \frac{(1-\alpha)|\tau|}{X_{q}(k, m)\left[\frac{[k+m] q}{(1+m) q}+2-(1-\alpha)|\tau|\right]} Y_{k} \bar{Z}^{k}=$
$z+\sum_{k=2}^{\infty}\left[X_{k}\left(h_{k}(z)-z\right)\right]$
$+\sum_{k=1}^{\infty}\left[Y_{k}\left(g m_{k}(z)-z\right)\right]$
$=\sum_{k=1}^{\infty}\left[X_{k}\left(h_{k}(z)+Y_{k}\left(g m_{k}\right)\right]\right.$
As required.
Theorem 2.5. Let $f_{m} \in \bar{M} \delta_{q}^{m}(\tau, \gamma, \alpha)$
where $|z|=r<1$. then
$\left|f_{m}\right| \leq$
$\left(1+\tau_{1}\right) r+$
$\left\{\begin{array}{l}\frac{(1-\alpha)|\tau|}{x_{q}(2, m)\left[\frac{\left.2(2+m)_{q}-2+(1-\alpha) \mid \tau\right]}{(1+m)_{q}}-\right.} \\ \frac{4-(1-\alpha)|\tau|}{x_{q}(2, m)\left[\frac{[2+m)^{2}}{(1+m) q}-2+(1-\alpha)|\tau|\right]}\left|\tau_{1}\right|\end{array}\right\} r^{2}$,
and
$\left|f_{m}\right| \leq$
$\left(1-\tau_{1}\right) r-$
$\left\{\begin{array}{l}\frac{(1-\alpha)|\tau|}{x_{q}(2, m)\left[\left.\frac{[2+2+3) q}{(1+m)}-2+(1-\alpha) \right\rvert\, \tau\right]}- \\ \frac{4-(1-\alpha)|\tau|}{x_{q}(2, m)\left[\frac{[2+m]_{q}}{(1+m) q}-2+(1-\alpha)|\tau|\right]}\left|\tau_{1}\right|\end{array}\right\} r^{2}$.
$\left|f_{m}\right| \leq\left(1+\tau_{1}\right) r+\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \leq$
$\left(1+\tau_{1}\right) r+r^{2} \sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right)=\left(1+\tau_{1}\right) r+$
$\frac{(1-\alpha)|\tau| r^{2}}{X_{q}(2, m)\left[\frac{2(2+m]_{q}}{(1+m) q_{q}}-2+(1-\alpha)|\tau|\right]} \times$
$\sum_{k=2}^{\infty} X_{q}(2, m)\left[\frac{\left[\frac{[2+m]_{q}}{(1+m)_{q}}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|a_{k}\right|+\right.$
$\left.\frac{\left[\frac{2[2+m] q}{(1+m)}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|b_{k}\right|\right] \leq\left(1+\tau_{1}\right) r+$
$\frac{(1-\alpha)|\tau| r^{2}}{X_{q}(2, m)\left[\frac{2(2+m) q^{2}}{(1+m)}-2+(1-\alpha)|\tau|\right]} \times$
$\sum_{k=2}^{\infty} X_{q}(2, m)\left[\frac{\left[\frac{2[2+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|a_{k}\right|+\right.$
$\left.\frac{\left[\frac{2[2+m] q}{(1+m)_{q}}+2-(1-\alpha)|\tau|\right]}{(1-\alpha)|\tau|}\left|b_{k}\right|\right] \leq\left(1+\tau_{1}\right) r+$
$\frac{(1-\alpha)|\tau|}{X_{q}(2, m)\left[\frac{[2+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right]} \times$

$$
r^{2}\left[1-\left|\tau_{1}\right| \frac{4-(1-\alpha)|\tau|}{(1-\alpha)|\tau|}\right]
$$

\leq
$\left(1+\tau_{1}\right) r+\left\{\begin{array}{l}\left.\frac{(1-\alpha)|\tau|}{x_{q}(2, m)\left[\frac{2(2+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right.}\right] \\ \frac{4-(1-\alpha)|\tau|}{x_{q}(2, m)\left[\frac{2[2+m] q}{(1+m) q}-2+(1-\alpha)|\tau|\right.}\left|\tau_{1}\right|\end{array}\right\} r^{2}$.

3 Conclusion

In this paper we determined coefficient bounds and other properties are obtained for a class of $M \delta_{q}^{m}(\tau, \gamma, \alpha)$ extreme points of closed convex hulls, and distortion theorems are determined for a family of harmonic starlike functions of complex order involving Ruscheweyh-type q-differential operator

4 Acknowledgement

The authors wish to thank Prof. Dr. M. K. Aouf for his kind encouragement and help in the preparation of this paper.

References

1 M. H. Abu-Risha, M. H. Annaby, M. E. H. Ismail and S. Mansour, Linear q(2007), difference equations, Z. Anal. Anwend. 26 481-494.
2 M. H. Annaby and Z. S. Mansour, q(2012) Fractional Calculus and Equations, Lecture notes in Math., vol. 2056. Springer, Berlin

3 M. K. Aouf and A. O. Mostafa, (2020), Subordination results for analytic functions associated with fractional q e calculus operators with complex order, Afr. Mat., 31 1387-1396.
4 M. K. Aouf and A. O. Mostafa, (2020), some subordinating results for classes of functions defined by Sălăgean type q e derivative operator, Filomat., 34 no. 7, 2283-2292.
5 M. K. Aouf, A. O. Mostafa and R. E. (2021),functions with varying arguments associated with q edifference operator, Afrika Math., 32 621-630
6 T. Bulboaca, M. A. Nasr and G. F. Sălăgean, A (1992), generalization of some classes of starlike functions of complex order, Mathematica (Cluj), 34, no. 57, 113-118.
7 F. H. Jackson, On q-functions and a certain (1908), difference operator, Trans. R. Soc. Edinb. 46 64-72.
8 J. M. Jahangiri, (2018), Harmonic univalent functions defined by q calculus operators, Inter. J.Math. Anal. Appl. 5 no. 2, 39-43.
9 S. Kanas, D. Răducanu, (2014), some subclass of analytic functions related to conic domains, Math. Slovaca 64 no. 5,

1183-1196
10 A. O. Mostafa and Z. M. Saleh, (2001) On a class of uniformly analytic functions with q-analogue, Int. J. Open Problems Complex Analysis, 13 no. 2, 113.

11 T. Rosy, B. A. Stephen, K. G. Subramanian and J. M. Jagangiri, Goodman-Rønning (2001), type harmonic univalent functions, Kyung pook Math. J. 41 45-54.

