	Mansoura University Faculty of Engineering Structural Engineering Dept.	First Page 1/2	Graduate Studies Theory of Plasticity 2012 - 2013		
	Time allowed: 3 hours				
	Students are allowed to only have the textbook "Plasticity for Structural Engineers" by Chen & Han Any missing data may be assumed				

Problem (1)-20%:

Fig. P1 shows a bar with a variable cross section; the left part has a length a = 0.6L with cross sectional area A and the right part has a length b = 0.4L with cross sectional area 0.5A, where L is the bar length. The bar is subjected to an axial force P through two rigid plates which are attached to the bar ends, as shown in the figure. The The bar is made of an elastic-perfectly plastic matreial with a yield stress σ_o . The axial force is first increased from zero until plastic flow occurs; then, P is completely unloaded to zero, followed by a reloading in the reversed direction until plastic flow occurs.

- i. Determine the elastic and plastic limit loads P_e and P_p during the loading.
- ii. Find the residual stress and plastic strain in the bar when the axial load P is unloaded to zero.
- iii. Determine the plastic limit load P_p during the reversed loading.

Problem (2)-25%:

The stress tensor at a point under the working load condition is given by

$$\sigma_{ij} = \begin{bmatrix} 15 & 12 & 0 \\ 12 & 20 & 0 \\ 0 & 0 & -8 \end{bmatrix} MPa$$

Based on the yield criterion $\tau_{oct} = 90$ MPa

- i. Calculate the safety factor of the point against yield, if all the stresses are increased proportionally to reach the yield surface.
- ii. Calculate the safety factor of the point against yield, if the stress σ_x is increased to the critical value of yielding, while the other stresses remain the same.
- iii. Determine the yield stress in simple compression.
- iv.² List the general characteristics of the yield surface associated with such criterion.

Problem (3)-20%:

Consider a nonlinear elastic material based on the complementary strain energy density, Ω , given by

 $\Omega(I_1, J_2) = aI_1^2 + bJ_2^2$

where a and b are material constants. The stress-strain relationship of the material in simple tension is given by

 $10^{7}\varepsilon = 10^{3}\sigma + \sigma^{3}$

i. Determine the constants a and b.

Mansoura University Faculty of Engineering	Second Page 2/2	Graduate Studies Theory of Plasticity	
Structural Engineering Dept.		2012 - 2013	

ii. Predict the the corresponding components of strain ε_{ij} of an element of this material subjected to a loading history which produces the following stress state,

$$\sigma_{ij} = \begin{bmatrix} 20 & 15 & 0 \\ 15 & 24 & 0 \\ 0 & 0 & -8 \end{bmatrix}$$

iii. Show that if this material model satisfies Drucker's stability postulate $\sigma_{ij} \varepsilon_{ij} > 0$ for any uniaxial tension ($\sigma_x = \sigma \ge 0$) or uniaxial compression ($\sigma_x = \sigma \le 0$) state of stress.

Problem (4)-14%:

A thin walled tube is subjected to a constant torsion and a variable axial tension. The torsion stress is $\tau = 0.5\sigma_o$. According to both the (i) von Mises criterion and (ii) Tesca criterion, find the magnitude of the axial stress σ_z such that the tube begins to yield. Also, find the ratio of the plastic strain increments $d\varepsilon_{ij}^p$ when the tube is yielded.

Problem (5)-5%:

Verify the upper bound to the limit load for the deformation mode shown in Fig. P5.

Problem (6)-16%:

Fig. P5.

For the beam and frame shown in Fig. P6, assuming that all members have the same plastic moment, M_p , find the collapse load P in terms of M_p .

