University : EL-Mansoura
Faculty : Engineering
Structural Eng. Dept.
Date: September, $I^{\text {st }}, 2013$

Final M. Sc. Examination Steel Structures.
Time allowed: 3 hours

Any Data Missing can be Reasonably Assumed.
Egyptian Code LRFD and steel tables may be used.

All Sketches Should be Clear. (Maximum Grade 100 Marks).

Question No.1: (15 Marks)

1-2): Derive the Design Resistance of Spiral Shear Connectors at Elastic and Plastic Ranges in the Composite Steel Beams (Cross Section of Beam may be Assumed as T-Section with Haunches). (10 marks)
1-2): How to Derive the Improved Formula to Calculate the Actual Deflection due to Concentrated Load at Mid-Span of the Composite Beam in Elastic Range.(5 Marhs)

Question No.2: (15 Marks)

State Briefly with Clear Sketches for the Following:
2-1): Reasons that the Load and Resistance Factor Design (LRDF) Method is an Improved Method for Design of Steel Structures than other Methods.
2-2): According to Classify the Degree of Composite Action between Steel Beam and Concrete Slab, try to Determine the Formula for each Composite Action.
2-3) Advantages and Disadvantages of Composite Columns.

Question No. 3: (15 Marks)

Figure (1) shows an intermediate main system of the industrial Hall for Steel Factory. The spacing between Frames is equal to 8.0m, and the dimensions of this hall are $160 * 20 \mathrm{~ms}$. If the calculated design ultimate Axial Strength and ultimate moment about the major axis of the column " $A-D$ " are $250.0 t$ and 10.0t.m respectively.
Required: Check of Axial Compression, Flexure and interaction of bending for composite column "A-D" given in Fig. I.
Data given: Steel Grade ST52 ($\left.F_{u, s, s}=5.2 \mathrm{t} / \mathrm{cm}^{2}, F_{y, s .}=3.6 \mathrm{t} / \mathrm{cm}^{2}\right)$, Steel Reinforcement of Grade 36/52, $\quad F_{\text {c.u. }}$ of concrete $=400 \mathrm{~kg} / \mathrm{cm}^{2}, C_{1}=0.7, C_{2}=0.48, C_{3}=0.2, \mathrm{Es}=$ $2100 \mathrm{t} / \mathrm{cm}^{2}, \& E_{\mathrm{C}}=240 \mathrm{t} / \mathrm{cm}^{2}$, Side sway is permitted.

Page (1/2)

Question No.4: (20 Marks)

Figure (2) Shows an Interior Composite Box Girder for a Steel Roadway Bridge and its Length is equal to 20m. The Dimensions of Cross Section for this Girder are also Given in Fig. (2). The Equivalent $W_{D . L . I}=($ weight of steel + own weight of slab) $=4 t / \mathrm{m}$ ', $W_{\text {D.L.2 }}=($ Weight of cover $)=1.2 \mathrm{t} / \mathrm{m}^{`}$ and $W_{\text {L.L. }}=8 \mathrm{t} / \mathrm{m}^{\circ}$. It is Assumed Fully Composite Interactian is Achieved between the Steel Beam and-Concrete Slab. Use Steel Grade 44. By using LRFD Method, It is required:

- Check for Design Requirements of the Composite Box Girder Given in Fig.(2) as a Simple Beam. Also, this Check must Include Deflection and Sliear Stresses.
- Calculate and Draw the Plastic Distribution of the Normal Sirresses on the Cross Section of this Beam.

Question No.5: (20 Marks):
Using LRFD method, Design the Beam column (A-B) of the Frame shown in Figure (3) including axial effect, bending effect, combined effect and shear stresses. The

Straining Actions are as follows:
-At Section " $A-A$ " $M_{U}=7.00$ t.m., $\quad P_{U}=10 t$ Compression, and $Q_{U}=5.0 t$
-At Section " $B-B^{\prime \prime} M_{U^{\prime}}=20.0$ t.m., $\quad P_{U}=10 t$ Compression, and $Q_{l}=5.0 t$
-Use Steel $52\left(F_{y}=3.6 t / \mathrm{cm}^{2} \& F_{l}=5.2 \mathrm{t} / \mathrm{cm}^{2}\right)$, bolts 020 (6.8 g grade) and Side Sway Permitted

Question No.6: (15 Marks):
By Using LRFD, Design an I.P.E. Section to be Used as a Beam to Support Machines in a Floor of an Industrial Building. The Beam Carries an Equivalent Uniformly Distributed Dead Load of 1.2 t/m` Including its Own Weight, and an Equivalent Uniformly Distributed Live Load of $0.4 t / \mathrm{m}^{\prime}$. the Beam Span is 6.0 m and is Simply' Supported to Other Main Beams. The Compression Flange of the Beam is Fully Laterally Unsupported. Use steel 37 Itaring $F_{r}=2.4 t / m^{2}$.

