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ABSTRACT

The redundancy number is usually used as the internal reliability measure. It is
commonly stated in literature that the value of redundancy number ranges
between zero and one, This study, however, indicates that the redundarcy number
may be beyond that range for correlated observations, Therefore, the internal
reliability can not correctly be indicated by the redundancy number. A new
suitable internal reliability measure for correlated observations is proposed . [n
this research, the relationship between the redundancy number and the proposed
internal reliability measure is discussed thoroughly.

Finally, three numerical examples representing different surveying problems such
as, vertical and horizontal geodetic networks as well as theodolite angle
observations were given in order to illustrate the application and the efficiency of
the proposed reliability measure.
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1. INTRODUCTION:

The reliability theory developed by BAARDA (1968) has been successfully used to
evaluate the ability to control observations called the internal reliability, and the
influence of non detectable outliers on the unknowns of an adjusted system, called
the external reliability. In order to interpret the concept of reliability, several
studies on the relationship between the reliability and geometry of a network have
beex made, summarized as the theory of residuals [1,3] . According to this theory,
the larger the redundancy number of an observation is, the better the outlier in the
corresponding observation will be revealed in its residual, and thus, easier to be
detected. Therefore, the redundancy number is widely used as a reliability
measure. However, this is appropriate only if the observations are not correlated.
For correlated observations the situation turns out to be completely different as
pointed out by WANG and CHEN (1994) . The redundancy number gave not only
negative values but also values bigger than one,

In this paper, firstly the theory of residuals is reviewed. Then internal and
external reliability measures for uncorrelated observations are summarized. In
addition, a formula of the new reliability number for correlated observations is
derived as a function of the multiple correlation coefficient, from which the range
of the new reliability number is discussed. Finally, the internal and external
reliability measures for correlated observations are investigated and discussed.

2. GAUSS MARKOY MODEL AND RESIDUALS THEORY

The Gauss Markov model of an adjusted system are determined based on the
following functional mode! , which is given in linear form by

v=Ax-1| (1)

And the stochastic model
-1 2 -1

P=Q =0, C (2)
Where v is the nxl vector of residuals, A is the nxu coefficient matrix, ( which is
also commonly known as the configuration matrix or design matrix } , x is the ux]
vector of unknown corrections to the approximate coordinates; L is the nx1 vector
of the absolute terms; P is the nxn weight matrix of the observations; Q, is the nxn
cofactor matrix of the observations, C, is the nxn covariance matrix of the

r
observations, and @ , is the a priori variance factor. The best estimate for the
least squares solution vector x and the corresponding cofactor matrix of the
estimated coordinates can be computed as follows [7,10] :

T AT o e
x =(APA) API=N"A"PI (&)
and

2 T -1
C.=0_1Q =00(APA) 4)

X "] X

Where Q‘ is the weight coefficient matrix of the estimated coordinates and
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- % is the a posteriori variance factor.

The residual vector of observations estimated from a least squares adjustment
and the corresponding cofactor matrix can be expressed as :

T

v=(AQ A P-1)I1 =RI (5)

and
o T P
Q,= P -AQA )

T

In which R = A Qx A P-1 is called , in the statistical literature, the
redundancy matrix [1,3] . Equation (5) describes a relationship between an
observation I and its residual v, .Let v* bethe additional residual due to
existence of an outlier A Ii in the observation . The impact on the residual of

observation I, can be given as follows :
i . e ) R | (M

3. RELIABILITY MEASURES FOR UNCORRELATED
OBSERVATIONS

3.1 Internal Reliability Measures

The internal reliability of an adjusted system is referred to as the controllability of
the observations described by the lower bounds for outliers, which can just be
detected at the given significance level ®y and power of the test g,

BAARDA (1968) and ALBERDA (1980) show that an equivalent one-dimensional
test for internal reliability is based on the statistic

wi=¢e ' Pv /¥e PQuP e =v/o0y (8)

where ¢, =(00 0 ...1....0 0 0) denotes an nxl vector containing one
in the ith position and zero elsewhere [5].

PELZER (1980) defines the quantity Z; which becomes, in the case of independent
observations with diagoral cofactor matrix Q; as follows:

Zo =V(e Qe)/ (e PQvPe )=an/aw (9)

This quantity is also useful in design for reliability because it can be evaluated a
priori for each observation 1, . It is the ratic of the standard error of an
observation I, , which is obtained from the proposed covariance matrix C, of
observations, to the standard error of its least squares residual, which is a function
of C; and the proposed design matrix A |8,9].

C.37
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ASHKENAZI (1980) proposes another quantity as an local internal reliability
measure, which can be given as:

=06yl oy (10)

This expresses the ratio of the standard error of a corrected observation to the
standard error of the observation itself. The usefulness of this measure of local
internal reliability is that it represents the way in which the network increases
precision of the measured elements. For a completely internally reliable
observation 6 3=0 so 7, =0 and for a completely unreliable observation 7, =1.

The most popular local measure of the internal reliability is known as the
redundancy number L which can be calculated for each observation from the

redundancy matrix using the fellowing relation :
o= (Y, (11

The redundancy number is a contribution of the observation I, tothe total
redundancy ( n - u), ie,

L r = Trace(Q, P) =n-u (12)

This means that, the sum of the redundancy numbers equals the degree of

freedom of the adjustment, whereas for individual redundancy numbers it is

widely accepted that the redundancy number ranges from zero to one [1,3],i.e.
0<r <1 (13)

BILL and MURLE (1984) proposed the following lower and upper boundaries for
the redundancy number as follows [2] :

0 < <001 { not control ability )
001 < < 0.10 { bad control ability )
0.10 < n < 0.30 ( sufficient control ability ) {14)
030 s £1 { good control ability)

This mean that, zero redundancy number implies uncountrolled observation in that
an outlier enters into the solution with its full size. The larger the redundancy
number r, is, the easier the outlier can be detected by testing the residual. Large

redundancy number (close to one ) are a sign for good reliability . If the
redundancy number is one , then the outlier is completely recovered by the
residual . In this case the observations said to be completely controlled by the other
observations, )

Alternatively, an average value of the redundancy number for the entire network
can be referred to as a global measure of internal reliability and seems to be more
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practical to utilize. The average redundancy number (r),. can be calculated as
a single representative number as follows [6]:

{r)ave=Tr/n =(n-u)imn (15)

POPE (1976) stated that for a good geodetic uetwork, (r) . should net be
less than ( 0.50). The higher the degree of freedom, the closer the average
redundancy number is to one [3] .

The marginally detectable errors computed for all observations are a measure of
the capability of the network to detect blunders with probability (I-p). They
constitute the internal reliability of the network because the marginally detectable
errors do not depend on the observations or on the residuals. They can be
computed as soon as the configuration of the network and the stechastic model are
known. This marginally detectable errors are determined by BAARDA (1968) for
certain probability levels a and By as follows [6] :

| M| 2 8g.0u/ Ym (16)

where 8¢ =the non centrality parameter of the normal distribution which
depends on the given probability a o and By and can be
determined as (for @ =0.10 and By=0.20 then &3 =4.13).
oy = the standard error of the ith observation.
rn = the redundancy number of the ith observation.

Equation ( 16 ) states that in 100 ( 1 - i, ) % of the cases, the outliers greater than
those given in equation (16) are detected, In 100 By % of the cases, outliers greater
than those given in equation (16) remain undetected. The larger the redundancy
number of the observation, the smaller the marginally detectable blunder. Because
one would like to have small magnitudes for the marginally detectable blunders,
the desirability of larger redundancy number follows. If the limits in equation (16)
are of about the same size, the observations are equally well checked, and the
internal reliability is said to be consistent [6] .

The absorption, which means that the portion of the blunder that propagates into
the estimated parameters and falsifies the solution, is

Ay =(1-n) A (17

The factor { 1 - r; ) is called the absorption number. The larger the redundancy
number is, the less absorption of the blunder ( less falsification). If vy = 1 , the
observation is called fully controlled, because the residual completely reflects the
blunder. A zero redundancy implies uncontrolled observations in that a blunder
enters into the solution with its full size. Observations with small redundancy
numbers might have small residuals and instill false security in the analyst. The
absorption number can be rewritten as a function of the residuals as follows [6] -

Ag=-vi{l=-n)/n - (18}
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The residuals can be looked on as the visible parts of errors. The factor in equation
(18) is required to compute the invisible part from the residuals.

3.2 External Reliability Measures

The external reliability is used to estimate the influence of undetectable blunders
on the estimated unknown parameters (coordinates) as well as any function
derived from these parameters in an adjusted system. The impact of blunders on
the parameters be minimal. BAARDA suggested the following expression {3,6] :

di = 8 V(1-1)/r; (19)

where the values iy are the measures of external reliability as a whole. If the Xy
are the same order of magnitude, the network is homogeneous with respect to
external reliability. If r; is small, the external reliability factor becomes large, and
the global falsification caused by the blunder can be significant. It follows that
small redundancy numbers are not desirable. Low external reliability implies that
the absorption of the blunder and subsequent faisification of the solution is
minimal . The global measure of external reliability Ay and the absorption number
A; have the same dependency on the redundancy numbers.

CASPARY (1988) suggested the maximum eigen value A . of the reliability
matrix {( P Qv P ) and the trace of the same matrix as a two global measures of
external reliability , which can be expressed as follows:

Trace (P Qv P) = max and A pax (PQy P) = max (20)

This means that for a given error vector the probability of detecting its existence is
related to the magnitude of A .. (P Qv P) . In addition, trace (P Qv P) can be
used to define the upper bound of the non centrality parameters. Additional
observations increase the number of degree of freedom and hence the magnitude
of the trace, which indicates the increased probability of error detection {3] .

4. RELIABILITY MEASURES FOR CORRELATED OBSERVATIONS

4.1 Internal Reliability Measures

The internal reliability of an adjusted system is referred to as the controllability of
the observations described by the lower bounds for outliers, which can just be
detected at the given significance level ¢y and power of the test Bo.

According to BAARDA and PELZER (1980), the lower bound for the outlier in the
observation 1| is expressed as

I

Agl; coﬁgl\fei"' PQy Pe =Cy.0y (21)
With

Cm = 50f '\’I eiTQici B|T PQvPei = 60:’ \’IRi (22}
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in which
Ri = & Qe e PQu P g (23)

where 8, is the non centrality parameter which depends on the given probability
oo and Py, and Cy is called the measure for the controllability of the observation
;; . The measure of the controllability indicates how many times of the
corresponding standard error ¢y the lower bound A,l; is.

WANG and CHEN (1994) suggested the internal reliability factor R;, which is
identical with the reliability number Z; , as a local measure of internal reliability in
case of correlated observations [11]. However, the range of R; cao be given as
follows :

0<R, £ quPy=1/(1-p?%) (24)

It should be noted that the internal reliability factor R; defined in equation (23) is
different in essence from the redundancy number r; for correlated observations.
The multiple correlation coefficient p; is defined through the follewing relation

pi = qu Ql‘lnu 9 / qa and 0<p” =1 (25)

wherethe (n—1) x1 vector g g corresponding to the ith column of Q, after
eliminating the element qy , similarly, the {n-1) x (n - 1) matrix Qqy results
from Q, after eliminating the ith row and the ith column,

Consequently, the range for these reliability numbers R; may well exceed the unit
interval, depending on the magnitude of p; , which makes a comparison very
difficult whenever the multiple correlation coefficient changes widely.

Based on the previous discussion, the normalized reliability number R, can prefer

be proposed as a local measure of internal reliability. The proposed measure can
be computed using the following relation:

Ri=R (1-p")= (¢ Q" e;)" (e PQvP ¢) (26)

With the following range y
0< R =<1 27)

for the detectable outliers in the case of correlated observations.

4.2. External Reliability Measure

The external reliability is used to estimate the influence of non detectable outlier
on the estimated unknown parameters in an adjusted system. It is gecerally

expressed as BAARDA (1968)

J\m = n Aum " = \Ir AoX;T Cx 1 An X (28)
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where the Agx; is a shift of the unknown parameters vector x caused by the
marginally detectable outlier Aol . The Xo; is named as the external reliability
measure. Equation (28) can be further simplified as [11] :

hi=8 V(L/R; (1-pl)-1 (29)

which indicates that the external reliability measure not only depends on the
internal reliability factor R;, but also on the multiple correlation coefficient Pi -
Finally, the external reliability measure can be expressed using the new reliability
number l'ti as follows :

=8 V(1-Ry)/R (30)

which nicely corresponding to the usual formula for uncorrelated observations
where R; is simply replaced by the redundancy number r itself.

5. NUMERICAL EXAMPLES
5.1 Simulated leveling Network

To illustrate the efficiency of the proposed reliability number on the different
practical surveying applications (problems), let us begin with the example of three
vertical control networks in different configurations A, B and C , illustrated in
Fig. 1, as discussed WANG and CHEN (1994). The three observations (height
differences) were assumed with the non diagonal cofactor matrix of the
observations. The internal and external measures as well as the proposed
reliability number were computed and listed in table (2).

5.2 Theodolite Angle Observations

The second example for this study was the reduction of theodolite direction
observations in connection with subsequent least squares adjustments. These
reductions of direction measurements are often called station adjustments. A set of
horizontal angles can be measured using the all combinations method, illustrated
in Fig. 2. The computation can be performed using the parametric technique. The
data being the same as that used by REISSMANN (1980) . The orientation and
other nuisance parameters can be removed from the least squares adjustment
using the Schreiber technique [10]. The internal and external reliability measures
as well as the proposed reliability number were computed and listed in table (3).

5.3 Real Geodetic Network

The third application for this study was a two - dimensional trilateration network
comprising six points is established in El — Mansoura city { Sandoub zone ). The
configuration of the network points is shown in Fig. 3. All distances of the network
legs were observed using SOKKIA ( SET 5) Total station. The standard errors
of the measured distances is + (5mm + 5PPm) . The approximate coordinates of
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h] hl h-l-
h
’ \e/,/a h hp
hs hy hy :
Case (A) Case(B) Case(C)
Fig.1: Simulated leveling networks in different configurations

Fig.Z.: Theodolite angle observations

Table‘l,'lie approximate coordinates
of the netpoints
Points X% Y
Py 2708.294 | 2000.235
Py 2002.848 | 1999.845 1

P; | 1920192 | 3017.159
P, 2356,732 | 4174.899
Ps | 3051.645 | 4003.819
P 2750.647 | 2971591

Fig. 3 : A real geodetic network.
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the netpoints are listed in table (1) with respect to the selected local horizontal
coordinate system. The network was adjusted by the least squares method using
the parametric technique. The internal and external reliability measures as well as
the proposed reliability number were computed and listed in table (4).

6. RESULTS AND DISCUSSIONS

I- Table (2) contains the internal and external reliability measures as well as
the proposed measures for the three cases ( A, B and C ). From the obtained
results, it was found that:

1- In case (A), we can see how wide the range for the redundancy numbers can
be found. The value of the redundancy number was found in the first
observation negative ( r; = -1 ) whilst in the third observation was found
higher than one (r;=1.5).

Table 2: Internal and external reliability measures for correlated observations in
leveling networks.

Case (A) Case (B) Case (C)
Redundancy matrix -1 -1 1 0 -06 0611 0 0
Q.P 05 05 050 0.1 -0.1 1.5 1 -1
-5 -15 150 -09 0.9 1.5 0 0
Reliability matrix 1 1 -1 0 0 0 5 3 -3
PQ. P 1 1 -1 0 02 -021( 3 2 -2
-1 -1 1 0 -0.2 0.2 | -3 -2 2
Redundancy r -1.00 0 1.00
number r; 0.50 0.10 1.00
Ty ry 1.50 0.90 0
WANG 'S R, 2.00 0 10.00
reliability factor | R, 1.00 0.20 2.00
Ry R; 5.00 1.00 10.00
Proposed R, 0.11 0 0.53
Reliability R, 0.50 0.10 1.00
number R 0.25 0.05 ' 0.50
R,
Trace (Q, P) 1.00 1.00 2,00
| Trace (P Q, P) 3.00 0.40 9.00
Trace (P Q;P) 12.50 15.10 6.50
|
(1) e 0.333 0.333 0.667
(R) ave 2.667 0.400 7333
(R) ave 0.287 0.050 0.667
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No longer are the values for the redundancy number restricted to the unit
interval, although they always sum up to the correct number r=n -1,
which equals one in cases (A) and (B) , and two in case (C).

All proposed reliability numbers belong to the unit interval, moreover, the
relative magnitude within the internal proposed reliability numbers R; may
change in comparison to the internal reliability factors R;. Thus, in case (C)
we might conclude that the second observation is poorly controlled, based
on the value of R; =2, while it turns out to be extremely well controlled as
the value of R;=1 .

Conversely, in case (C) the third observation would appear to be
uncontrolled as it is apparent when the redundancy number r;=0 ,
whereas it is moderately controlled as R; = 0.5 . (third observation is not
highly controlled as indicated by Ry = 10),

Similar discussions apply to cases (A) and (B) , for instance, in case (B) the
first observation will be flagged as fully uncontrolled independent of the
chosen criterion r; = R; =Ry = 0, and in case (A) the second observation
will be relatively best controlled among the three criteria , using the
criterion Rz =0,5> R; > R1 , although the value Ro=1<R; <Ry would
erroneously indicate otherwise.

II-Table (3) contains the internal and external reliability measures as well as
the proposed measures for correlated and uncorrelated theodolite angle
observations, while table (4) shows the internal and external reliability measures
as well as the proposed measures for correlated and uncorrelated observations
in real trilateration network. From these tables, the following results can be
stated:

1- In most cases internal reliability factors are higher than one. Therefore, the
reliability factor ¢an not be used as a measure of the internal reliability.

Table 3. Internal and external reliability measures for correlated and

uncorrelated theodolite angle observations.

C.45

Correlated Observations Uncorrelated OQbservations
n Ry R N R R
1 0.125 0.786 0.393 0,500 0.500 0.500
2 0.571 1.143 0.571 0.500 0.500 0.500
3 0.518 0.786 0.393 0.500 0.500 0.500
4 0.821 1,143 0.571 0.500 0.500 0.500
5 0.429 1.071 0.536 0.500 0.500 0.500
6 0.536 0.571 0.286 0.500 0.500 0.500
Tr(Q.P) 3.000 3.000
Tr(PQ,P) 5.500 3.000
Tr(PQP) 6.500 3.000
(Dave 0500 | 0917 | 0.458 0500 | 0500 | 0.500
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2-The redundancy numbers r; are considerably smaller than the corresponding
internal reliability factors R;.

3-The smallest reliability factor R; does not necessarily correspond to the smallest
redundancy number r; .

4-All values of the proposed internal and external reliability numbers lies between
zero and one .

5-In case of uncorrelated observations , the redundancy numbers, the internal
reliability factors and the proposed internal reliability numbers gave the same
identical numerical values ( =R; = R; ). Therefore, it is not necessary to
caiculate both the imternal reliability factors and the proposed internal
reliability numbers for this case.

Table 4. Internal and external reliability measures for correlated and
uncorrelated observations in real geodetic network.

| Correlated Observations | Uncorrclated Observations |
n | R | R YRR R R

1 0.005 0.173 0.141 | 0122 0.122 0.122

| 2 0.380 0.394 0.197 0.264 0.264 0.264

| 3 0354 | 0261 | 0.235 0334 | 0334 | 0334
4 0.491 0.461 0.348 0.436 0.436 0.436 |

3 0.268 | 0.241 0.196 0.169 0.169 0.169

6 0.121 0.383 0.311 0.268 0.268 0.268

7 0.216 0.588 0.296 0.177 0.177 0.177

8 0.269 1.039 0.520 0.296 0.296 0.296

9 0.165 0.372 0.186 0.142 0.142 0.142

10 0.113 0.320 0.161 0.096 0.096 0.096

it | 0077 0.806 0.403 0.243 0.243 0.243

12 0.542 0.782 0.513 0.454 l 0.454 0.454
CTr(Q.P) 3.000 3.000 l

Tr(PQ,P) 7.275 3.000

} Tr(PQ;P)_ 22.843 9,000 'l
L _(Nwe | 0250 | 0485 | 0292 0250 | 0250 | 0250

7. CONCLUSIONS AND RECOMMENDATIONS:

In this paper, the recently introduced internal and external reliability factors for
correlated observations have been modified to make them more comparable to the
redundancy numbers of BAARDA (1968) , which are only valid for uncorrelated
observations. The new proposed internal and external reliability numbers lie
between zero and ome ., They can be used to represent the percentage of
controllability of an outlier that occur in particular observations. This makes the
interpretation of any problem much easier as far as reliability is concerned.

The proposed internal and external reliability measures, which can be computed
using the equations (26) and (30), are suitable for both correlated and
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uncorrelated observations. The relationship between the proposed internal
reliabllity number and the internal reliability factor is also given .
This study could be considered as an extension for what WANG and CAEN {1994)
have done before. All equations derived with the multiple correlation coefficient
can be used for further study of the influence of the correlation between the
observations on the reliability of an adjusted geodetic network .
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