Mansoura University Faculty of Engineering Mech. Power Eng. Dept. Third Year (قديم)

Final Semester Exam Combustion Engines - MPE4322 June 1, 2013 - Time: 3hours Exam on 2 pages - Total Mark:100

Answ	ver the following questions. Assume any necessary assumptions:	(Ma	rk)
1.	a) Discuss briefly variables affecting volumetric efficiency for SI engines.b) Discuss briefly stages of combustion process in SI engines.c) What are the normal ranges of the maximum average piston speeds for all	(4) (4)	[12]
	reciprocating internal combustion engines? Explain why?	(4)	
2.	 a) Compare between air-cooling engines and liquid-cooling engines. Also discuss characteristics of engine liquid coolant. b) Function bein for the second secon	(5)	[15]
	also discuss the multi-grade engine lubricating oils.c) "Stratified air-fuel distribution is an advanced technology for good	(5)	
	combustion process in SI engines", discuss briefly this statement and illustrest sequence events required to assure this.	ate (5)	
3.	Carefully using illustrations, <u>discuss briefly</u> each of the following: a) Air-fuel vapor zones around the inner liquid core of a Diesel engine		[15]
	injected fuel spray jet. b) Flow of gases through the exhaust valve out of engine cylinder vs. crank	(5)	
	angle degrees.	(5)	
	use suitable values in your illustration.	(5)	
4.	A large straight six CI truck engine operates on an air-standard Diesel cycle is heavy diesel fuel ($Q_{LHV} = 41,400 \text{ kJ/kg}$), with combustion efficiency of 98% engine has a compression ratio of 16.5:1. Temperature and pressure in cylinders at the start of the compression stroke are 55°C and 102 kPa, maximum cycle temperature is 2410°C. Calculate: 1. Temperature, pressure, and specific volume at each state of the cycle. 2. Air-fuel ratio of the cylinder gas mixture. 3. Cylinder temperature when the exhaust valve opens. 4. Indicated thermal efficiency of the engine.	using . The 1 the , and	[18]
5.	A 2.8-liter four-cylinder square engine (bore = stroke) with two intake valve cylinder is designed to have a maximum speed of 7500RPM. Intake temperate 60°C, calculate: 1. Intake valve area.	s per ure is	[12]
	2 Diameter of intake valves		

3. Maximum valve lift.

1

- 6. A six-cylinder SI engine with a total displacement of 1.86 liters operates at 2400 RPM using gasoline direct injection (GDI) with two injections per cycle in each [14] cylinder. The spark plug is fired at 19° bTDC, and there is an ignition delay of 0.0015 seconds before combustion is established. During combustion, there is a rich air-fuel mixture around the spark plug of AF =11:1 and a lean mixture in the rest of the combustion chamber of AF = 20:1. The rich zone can be modeled as a 2-cm-diameter hemisphere around the spark plug with a flame speed of 32 m/sec. The lean zone then fills the rest of the combustion chamber to the outer edge of the bore and a flame speed of 19 m/sec. The engine has a compression ratio of 9.8, a stroke of 7.20 cm, and a connecting rod length of 13.3 cm, with the spark plug at the center of the combustion chamber. Calculate:
 - 1. Crank angle position at the end of combustion.
 - 2. Piston speed at the end of combustion.
- 7. A four cylinder 1.8 liter SI Engine is designed to have a maximum speed of 6000 rpm. At this speed the volumetric efficiency of the engines is 0.92. The engine will ^[14] be equipped with a one-barrel carburetor. Gasoline density can be considered to be 750 kg/m³. Assuming the height differential of the fuel capillary tube = 1.5 cm., calculate:
 - a) Throat diameters for the carburetor (assume discharge coefficient, $C_{Dt}=0.92$).
 - b) Fuel capillary tube diameter (assume discharge coefficient, $C_{Dt}=0.74$).
 - The air/fuel ratio supplied by the carburetor can be obtained by;

$$AF = m_a / m_f = (C_{Dt} / C_{Dc})(A_t / A_c)(\rho_a / \rho_f)^2 \Omega \Pi$$

where $\Omega = [\Delta P_a / (\Delta P_a - \rho_f gh)]^{\frac{1}{2}}$

and

 $\Pi = \{ [k/(k-1)] [(P_t/P_0)^{2/k} - (P_t/P_0)^{(k+1)/k}] / [1 - (P_t/P_0)] \}^{\frac{1}{2}}$

Good luck,

Prof. Dr. S. H. El-Emam & Dr. A. A. Hassan

For required thermodynamic properties of air use: Air gas constant R = 0.287 kJ/kg.K, and c_p as the following;

Temperature, K	298	300	500	850	1000	1500	2000	2500	3000
$c_{p,}$ kJ/kg.K	1.005	1.005	1.029	1.108	1.14	1.21	1.249	1.274	1.291