Menoufia University	Subject: Thermodynamics (MPE 120)
Faculty of Engineering	Time Allowed: 3 hours
Mech. Power Dept.	Total Marks : 70 marks
Shebin El-Kom, Egypt.	Date of Exam : 30/5/2018
2 nd Semester Examination 2017-2018	
لا تستخدم القلم الرصاص في الاجابة	ملحوظة : من فضلك
Notes: 1- The exam consists of 6 questions distributed over t	wo pages
2- The universal gas constant= 8314 J/kmol-K	
Question # 1 (10 marks)	internal anergy (2 marks)
a) <u>What is meant by</u> : extensive system property - system	ow that the enthalow of an ideal gas depends
b) <u>Define</u> the enthalpy of a thermodynamics system and \underline{sn}	(2 marks)
only on the gas temperature. $(M-4) \approx -1.667$ at 450 kPa 57 °C is cont	ained in 1.5 m ³ rigid tank. The gas leaked out
c) Helium gas (M=4, $\gamma = 1.007$) at 450 km a, 57 C is con-	are of the gas reached 200 kPa and 37 °C at
which point the valve is closed.	
a Calculate the helium gas constant R	(1 mark)
b. What is the mass of the helium gas leaked out the ta	nk? (2 marks)
c. If the helium gas eventually cools to 27 °C. Find t	he final gas pressure inside the tank and the
amount of heat rejected during the cooling process (in kWh). (5 marks)
Duestion # 2 (14 marks)	1 1 + + 2 During the process the absolute
a) One kg of an ideal gas undergoes a process between state	and state 2. During the process the absolute
gas temperature is varied with the gas volume as $TV =$	sfor during the process can be expressed as:
work during the process and prove that the heat train	gas specific heats at constant volume and
$Q_{12} = (2 C_V - C_P) (T_2 - T_1);$ where C_V, C_P are the	(4 marks)
constant pressure, respectively.	3 her and a volume of 0.45 m^3 expands to a
b) 1.5 kg of air (R=287 J/kg-k, γ =1.4) at pressure of	tch the process on P-V and T-v diagrams and
pressure of 1 bar following the relation 1 v - const. One	lone during the process 3- the change in air
<u>Determine</u> 1- the heat transfer during the process.	(5 marks)
entitalpy 4- the near transfer our agailibrium constant pr	essure process during which the gas specific
c) 1.25 kg of a gas undergoes an equilibrium constant provide the specific net energy $0.16 \text{ m}^3/\text{kg}$ and the specific net energy	rgy transfer across the system (gas) boundary
volume decreases by 0.10 m /kg and the specific decreases (± 72) k l/kg. The boundary work is the only work tra	nsfer during the process and is equal to (-24)
kI Sketch the process on P-V diagram and	(1 mark)
- Determine the gas pressure during the process (in	Pa) (2 marks) (2 marks)
- Calculate the change of gas energy and the heat tra	nsfer during the process (2 marks)
$\mathbf{P}_{\text{estion}} # 3 (11 \text{ marks})$	
a) Write down the first law of thermodynamics for SSS	F process and <u>explain</u> briefly the meaning of
every term in the law.	(2 marks)
b) Liquid water with specific volume of 0.0015 m^3/kg a	nd specific enthalpy of
125 kJ/kg enters an insulated tube with mass flow rat	e of 0.1 kg/s. The water
is heated through a resistor inserted in the tube. The w	ater exits the tube with
specific enthalpy of 145 kJ/kg. Determine the volume f	low rate of water at the
tube inlet and the rate of electrical work input to the re	(4 marks)
5 m lower than the tube inlet.	(+ + + + + + + + + + + + + + + + + + +
c) Hot air (R=287 J/kg-k, γ =1.4) enters a convergent not	zzle at pressure of 305 kPa and temeprature of

c) Hot air (R=287 J/kg-k, γ =1.4) enters a convergent nozzle at pressure of 305 kPa and temeprature of 400 K and with velocity of 18 km/hr. The air exits the nozzle at 100 kPa, 360 K. During air flow in the nozzle, the nozzle surface <u>dissipates</u> 7200 kJ of heat to the surroundings every <u>hour</u>. If the nozzle inlet diameter is 12 cm, <u>determine</u> the air exit velocity <u>and</u> the nozzle exit diameter (in cm). (5 marks)

-----)

This is the first page please see the second page

[NB Please don't use Pencil in your solution, For air $C_v = 718 \text{ kJ/kg}$, R = 287 J/kg K

Question # 4 (9 marks)

a) A refrigerator uses 100 J of work to remove 200 J of heat from its contents. Calculate, (3 marks)

- i. the coefficient of performance.
- ii. the heat rejected to the surroundings.
- b) An engine that has an efficiency of 25% takes in 200 J of heat during each cycle. (3 marks) Calculate,
 - i. the work this engine performs.
 - ii. the heat must it reject to the heat sink.
- c) A Carnot heat pump with heating capacity of 10 kW used to heat a house to keep it's inside temperature at 25 °C while atmospheric temperature is (-15 °C). Calculate, (3 marks)
 - i. the power required to drive the heat pump.
 - ii. the heat it picks up from the atmosphere.

Ouestion # 5 (12 marks)

An adiabatic thermodynamic system composes of four thermal insulated compartments with equal volumes of 0.1 m³ as shown in figure. The compartments contain air with pressure and temperature as given. If the insulation between the compartments is removed while they remain unmixed and left to attain thermal equilibrium calculate,

- the final temperature of the whole system and the i
 - final pressure in each compartment.
- ii- the entropy change for each compartment.
- iii- the loss in available energy due to this process.

Α	В
250 k Pa	350 k Pa
600 °C	300 °C
	ана С. н., С. н.,
С	D
C 150 k Pa	D 300 k Pa
C 150 k Pa 1300 °C	D 300 k Pa 150 °C

Ouestion #6 (14 marks)

An Otto cycle has a compression ratio of 10/1. If heat input is 300 kJ/kg and pressure and temperature at compression start are 100 kPa and 27°C respectively. Calculate,

- the thermal efficiency. i.
- the maximum cycle temperature and pressure. ii.
- iii. the network output per kg of air.

With our best wishes

End of questions

				This e	xam mea	sures the fo	ollowing	ILOs				
Question Number	Q1- (a,b,c)	Q2- (a,b,c)	Q3-a	Q4- (a,b,c)	Q6	Q2- (a,b,c)	Q3- (b,c)	Q4- (a,b,c)	Q5	Q6	QZ	Q5
	A5-2	A5-6	A5-7	a5-9	a5-13	b2-4	b2-6	b2-11	b2-9	b2-12	C1-1	c1-3
Skills	Skills Knowledge &Understanding Skills					Intellectual Skills				Professional Skills		