Menofia University
Faculty of Engineering Shebien El-kom
Basic Engineering Sci. Department.
Academic Year: 2017-2018
Date: 3/1/2018

Subject: Mathematical Physics Code: BES 522 Time Allowed: 3 hours Year: Master Total Marks: 100 Marks

Allowed Tables and Charts: None

Answer all the following questions: [100 Marks]

Q.1	a) Deduce, classify and check the partial differential equation which	[25]
	has the general solution $u = x F(y) + y G(x)$, where $F(y)$ and	
	G(x) are arbitrary functions.	
	b) Classify, solve and check the equation $u_{xy} = u_x + 2$ with the	
	boundary conditions: $u(0, y) = 0, u_x(x, 0) = x^2$	
Q.2	a) Derive the heat conduction equation $u_t = k \nabla^2 u$, where $u(x, y, z, t)$	[25]
	is the temperature at position (x, y, z) in a solid body at time t. The	
	constant k is the diffusivity, $k = \frac{\alpha}{\sigma \rho}$, the specific heat σ and the	
	density (mass per unit volume) ρ are assumed to be constant, α is	
	the thermal conductivity.	
	b) Classify, solve and check the heat equation $u_t = u_{xx}$ with the	
	conditions:	
	$u(0,t) = 0, \ u(\pi,t) = 0, t > 0$	
15	$u(x,0) = 2\sin x + 4\sin 2x + 6\sin 3x, 0 < x < \pi.$	
Q.3	a) Proof that:	[25]
	(i) $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta \ d\theta$	
	(ii) $\Gamma(n+1) = (n)!$	
	(iii) $\Gamma(n+1) = n \Gamma(n), n > 1$	

b) Evaluate the following integrals: (i) $\int_0^\infty \sqrt{y} e^{-y^3} dy$ (ii) $\int_0^1 \frac{dx}{\sqrt{-\ln x}}$ (iii) $\int_0^\infty x^6 e^{-2x} dy$ (iv) $\int_0^1 e^{-x^3} dx$ (v) $\int_0^2 \frac{x^2}{\sqrt{2-x}} dx$ (vi) $\int_0^1 x^4 (1-x)^3 dx$ (vii) $\int_0^2 \sin^6 \theta \ dx$ (viii) $\int_0^{\frac{\pi}{2}} \tan^6 \theta \ dx$ $\mathbf{Q.4} \mid \mathbf{a}$) Find the Fourier series of the function defined by: [25] f(x) = x $0 < x < 2 \pi$ b) Find the Fourier series of the function defined by: $f(x) = \begin{cases} a & 0 < x < L \\ -a & -\pi < x < 0 \end{cases}$ (A) Find the Fourier sine series of the function defined by: $f(x) = x^2, \ 0 < x < \pi$

Good Luck

Dr. Bilal M. Ali Maher

Dr. Ramzy M. Abumandour