Menoufiya University Faculty of Engineering Shebin El-Kom Second Semester Examination Academic Year: 2012-2013 Date: 11/6/2013

Department: Electrical Engineering Year: 3rd Year Time allowed: 3 Hours Course Title/Code: Optimization methods in electric power systems. (Elective Course 4) / ELE 322B

[100Mark]

[23Mark]

(3Mark)

(20Mark)

[25Mark]

Allowed Tables and Charts: None

Answer the following questions:

Question (1)

(a) Define:

Optimization-Incremental fuel rate- Economic Power dispatch.

The incremental costs for a plant consisting of three units are:

$df_1/dp_1 = 0.03 P_1 + 6$		\$/MWh
$df_2/dp_2 = 0.09 P_2 + 3$		 \$/MWh
$df_3/dp_3 = 0.02 P_3 + 4$	121	\$/MWh

Assume the total load varies from 150 to 450 MW with step 50 MW and the power output limits are $50 \le P_1 \le 100$ MW and $40 \le P_2 \le 100$ MW. Find the incremental fuel cost of the plant and the allocation of load between units for the minimum cost of operation.

Question (2)

- (a) State the mathematical formulation of multi-objective environmental/economic (10Mark) power dispatch problem. Then show how to use \mathcal{E} -constraint method to find optimal solutions of this problem. Take No_x objective function as the primary objective function.
- (b) A power system has two thermal generating units with parameters:

A power system has two thormal generators(15Mark) $a_1 = 4.036 * 10^{-3}$ $a_2 = 4.812 * 10^{-3}$ $b_1 = 5.93$ $b_2 = 6.02$ Given that this system has the following B-coefficients, $B_{11} = 3.95 * 10^{-4}$ $B_{22} = 4.63 * 10^{-4}$ and the total generated power from the two units is 700 MW, Calculate:

1. The incremental fuel cost

2. Efficiency of the system

1/2

Question (3)

[26Mark]

(6Mark)

(20Mark)

[26Mark]

(a) Write short notes about:

Regression analysis- Load curve- Load forecasting classifications- Extrapolation technique.

(b) The yearly demand for a system is tabulated below:

Year	2005	2006	2007	2008	2009	2010	2011
Peak Demand (MW)	151.2	164.7	177.3	188.1	200.7	211.5	220.5

Project the load up to 2015 using the following analytical function:

 $P_{Di} = e^{(a+bX_i+cX_i^2)}$

Question (4)

(a) Discuss:

The constraints of unit commitment problem - The difference between economic (6Mark) power dispatch problem and unit commitment problem.

(b) A power system has 3 thermal generating units with parameters listed in the (20Mark) table below. Determine the most economical units to be committed for a load of 4 MW. Let the load change be in step of 1 MW. The cost function equation is: $F_i(x) = a_i P_i^2 + b_i P_i + c_i$ and the power of each unit varies from 1.0 MW to 5.0 MW. Use Dynamic programming method.

	Cost curve coefficients			
Units	a_i	b _i	C _i	
1	0.77	47.0	50	
2	1.60	53.0	50	
3	2.00	60.0	50	

Gu	ood Luck,	Dr. Shaimaa R	Rabah			
ملحوظة: هذا الجدول خاص بالجوده ولا يعنى الطالب						
	National Academic Reference Standard(NARS)					
Field	Knowledge & Understanding	Intellectual Skills	Professional Skills	General Skills		
Program Academic Standards that the course contribute in achieving	al-1, al3-1, a23-1	b1-1. b7-1, b13-1. b16-1, b16-2	C7-1. c17-1,			