Al-Mansoura University
Faculty of Engineering
Department of Comm. \& Electronics.
Electronic Measurements (1), COM 9123

First Year Students.
Time: 3 Hours
June 2014
Total 100 Marks

Attempt in all questions and assume any missing data.
Q1:(a)-For the following measurements data sets:
Data Set A: 24.3643
24.3519
21.1894
23.2292
24.8344
23.3247
20.0496
20.6850
24.0938
22.1508 .
$\begin{array}{lllll}\text { Data Set B: } & 23.7683 \quad 23.9694 & 24.5998 & 24.2236 & 21.8388\end{array}$ $23.1040 \quad 23.6564 \quad 20.9695 \quad 24.5241 \quad 22.8460$.

Calculate mean, median, standard deviation and the variance for each of the data set shown above. Which one is accurate?
(8 Marks)
(b)-Three resistances have the following ratings: $\mathbf{R 1}=\mathbf{1 5} \Omega \pm \mathbf{5 \%} ; \mathbf{R 2}=\mathbf{3 3} \Omega \pm \mathbf{2}$
$\% ; \mathbf{R 3}=\mathbf{7 5} \Omega \pm \mathbf{5} \%$. Determine the magnitude and limiting error in ohms, if the resistances are connected: 1 -in series, 2 -in parallel. Also obtain percentage relative limiting error in the resultant.
(8 Marks)
Q2:(a)-A voltmeter having a sensitivity of $2 \mathrm{k} \Omega / \mathrm{V}$ reads 90 V on its $\mathbf{1 5 0 \mathrm { V }}$ range, when connected across an unknown resistor in series with an ammeter. The ammeter resistance is $\mathbf{1 0 0} \boldsymbol{\Omega}$ and reads $\mathbf{3 0} \mathbf{~ m A}$. Calculate:
1-Apparent resistance. 2-Actual resistance of unknown resistor. 3-Error due to loading effect of voltmeter. 4-Percentage relative accuracy.
(8 Marks)
(b)-Figure (1) shows a simple series circuit of $\mathbf{R} 1$ and $\mathbf{R} \mathbf{2}$ connected to a $\mathbf{2 5 0} \mathbf{V} \mathbf{D C}$ source. If the voltage across $\mathbf{R 2}$ is to be measured by the voltmeters having: 1-A sensitivity of $\mathbf{5 0 0} \Omega / \mathrm{V}, 2-\mathrm{A}$ sensitivity of $\mathbf{1 0 , 0 0 0} \boldsymbol{\Omega} / \mathrm{V}$. Find which voltmeter will read more accurately. Both the meters are used on the $\mathbf{1 5 0} \mathrm{V}$ range.
(8 Marks)

Figure (1)

Q3:(a)-A moving coil instrument gives a full scale deflection for a current of 20 mA with a potential difference of $\mathbf{2 0 0} \mathbf{~ m V}$ across it. Calculate: 1-Shunt resistor required to use it as an ammeter to get a range of $\mathbf{0 - 2 0 0} \mathrm{A}$.
2 -Multiplier required to use it as a voltmeter of range $\mathbf{0 - 5 0 0} \mathrm{V}$.
(8 Marks)
(b)-A basic D'Arsonoval movement with an internal resistance of $\mathbf{5 0} \boldsymbol{\Omega}$ and a full scale deflection current of $2 \mathbf{m A}$ is to be used as a multirange voltmeter. The voltage ranges are $\mathbf{0 - 1 0} \mathrm{V}, \mathbf{0 - 5 0 V}, \mathbf{0 - 1 0 0} \mathrm{V}, \mathbf{0 - 5 0 0} \mathrm{V} .1$ - Design the series string multipliers. 2-Design the individual multipliers.
(8 Marks)
Q4:(a)-A D'Arsonval movement with an internal resistance of 730Ω and full scale current of $5 \mathbf{m A}$ is available. A multirange ammeter with the ranges of $\mathbf{1 A}$, $\mathbf{5 A}$, and $\mathbf{2 5 A}$ is employing: 1-Derive an expression for individual shunts and
calculate its values. (2)- Derive an expression for Aryton shunts and calculate its values.
(b)-A 50Ω basic movement requiring a full scale current of $\mathbf{1} \mathbf{m A}$ is to be used as an ohmmeter. The internal battery voltage is $\mathbf{3 V}$. A half scale deflection marking desired is $\mathbf{1} \mathbf{k} \boldsymbol{\Omega}$. Calculate: 1-Values of $\mathbf{R 1}$, and $\mathbf{R 2}$. 2-Maximum value of $\mathbf{R} \mathbf{2}$ to compensate for a $\mathbf{5} \%$ drop in battery voltage.
(8 Marks)
Q5:(a)-The four arms of the Wheatstone bridge, shown in Figure (2), have the following resistances; $\mathbf{A B}=\mathbf{1} \mathbf{k} \Omega, B C=\mathbf{1} \mathbf{k} \Omega, C D=120 \Omega$, and $D A=120 \Omega$. The bridge is used for strain measurement and supplies from $\mathbf{5 V}$ ideal battery. The galvanometer has sensitivity of $\mathbf{1} \mathbf{m m} / \boldsymbol{\mu} \mathbf{A}$ with internal resistance of $\mathbf{2 0 0} \boldsymbol{\Omega}$. Determine the deflection of the galvanometer if arm DA increases to 121Ω and $\operatorname{arm} \mathrm{CD}$ decrease to $\mathbf{1 1 9 \Omega}$.
(9 Marks)

Figure (2)

Figure (3)
(b)-The temperature dependent resistor is used in one arm of a Wheatstone bridge. The other resistances $\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}=\mathbf{R}_{\mathbf{3}}=\mathbf{6} \mathbf{k} \Omega$ and $\mathbf{V}=\mathbf{1 0 V}$. The variation of resistance in $\mathbf{k} \boldsymbol{\Omega}$ against temperature is given by: $\mathbf{R}=\mathbf{2}+\mathbf{t} / \mathbf{2 0} \mathbf{k} \boldsymbol{\Omega}$. Calculate the temperature at which the bridge is balanced. Also calculate the error voltage at $55^{\circ} \mathrm{C}$ and $95^{\circ} \mathrm{C}$.
(9 Marks)
Q6:(a)-The AC bridge shown in Figure (3) is balanced at $\mathbf{1} \mathbf{~ k H z}$. It has following components: $\mathbf{C}_{\mathbf{1}}=\mathbf{0 . 2} \mu \mathrm{F}, \mathbf{R}_{\mathbf{2}}=\mathbf{5 0 0} \Omega, \mathbf{R}_{\mathbf{3}}=\mathbf{3 0 0} \Omega$, and $\mathbf{C}_{\mathbf{3}}=\mathbf{0 . 1} \mu \mathrm{F}$. Derive an expression for the unknown impedance Find the value of $\mathbf{Z}_{\mathbf{x}}$.
(9 Marks)
(b)-For the Wien bridge shown in Figure (4), derive an expression for the frequency \mathbf{f} of this bridge at a balance condition. Also find the equivalent parallel resistance and capacitance that causes a Wien bridge to null with the following component values: $\mathbf{R}_{1}=\mathbf{2 . 7}$ $\mathrm{k} \Omega, \mathrm{C}_{1}=\mathbf{5} \mu \mathrm{F}, \mathrm{R}_{2}=22 \mathrm{k} \Omega, \mathrm{R}_{4}=100$ $\mathbf{k} \boldsymbol{\Omega}$. The operating frequency is $\mathbf{2 . 2}$ kHz.

Figure (4)

