Mansoura University		$1^{\text {st }}$ Year Electrical Engg.
Faculty of Engineering		Final Exam, June, 2012
Mechanical Eng. Dept.		Time: 1.5 hrs
	Fluid Mechanics and	
	Thermal Engineering	
	Part II	

Assume Any Reasonable Missing Data

Answer the following questions:

1.a) Define: the energy, the power, the system, the process and the cycle.
b) Air is to be heated steadily by an 8 kW electric resistance heater as it flows through an insulated duct. If the air enters at $50^{\circ} \mathrm{C}$ at a rate of $2 \mathrm{~kg} / \mathrm{s}$, determine the exit temperature of air.
2.a) An air-conditioning system operating on the reversed Carnot cycle is required to transfer heat from a house at a rate of $750 \mathrm{~kJ} / \mathrm{min}$ to maintain its temperature at $24^{\circ} \mathrm{C}$. If the outdoor air temperature is $35^{\circ} \mathrm{C}$, determine the power required to operate this air-conditioning system.
b) An air-standard Diesel cycle has a compression ratio of 18.2 . Air is at $27^{\circ} \mathrm{C}$ and 1 bar at the beginning of the compression process. If the air temperature at the end of the heat addition process is $1400^{\circ} \mathrm{C}$, determine (a) the cutoff ratio, (b) the heat rejection per unit mass, and (c) the thermal efficiency.
3.a) Hot air at $80^{\circ} \mathrm{C}$ is blown over a $2 \mathrm{~m} \times 4 \mathrm{~m}$ flat surface at $30^{\circ} \mathrm{C}$. If the convection heat transfer coefficient is $55 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$, determine the rate of heat transfer from the air to the plate, in kW .
b) A heat exchanger is to heat water $\left(c p=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$ from 25 to $60^{\circ} \mathrm{C}$ at a rate of $0.2 \mathrm{~kg} / \mathrm{s}$. The heating is to be accomplished by geothermal water ($c p=4.31 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$) available at $140^{\circ} \mathrm{C}$ at a mass flow rate of $0.3 \mathrm{~kg} / \mathrm{s}$. Determine the rate of heat transfer in the heat exchanger and the exit temperature of geothermal water.

GOOD LUCK
Dr. Mostafa Awad

Electrical Eng. Dept.
Faculty of Engineering
Mansoura University

Fluid Mechanics
First Year من الخارج Allocated Time: 1:30 hrs

Prob. 1
(15 points)

Calculate the gauge pressure of air in the tank shown in Figure.

Prob. 2 (20 points)
A hinged gate is used as a retainer for castor oil ($S=0.96$) as shown in Fig. The liquid depth to the horizontal portion of the gate is 0.6 m , and the gate itself is to be designed so that the oil depth does not exceed 1.5 m . When the depth is greater than 1.5 m , the fluid forces act to open the gate, and some oil escapes through it. The gate width is 0.6 m . Determine the length L required for the gate to open when necessary.

Prob. 3 (20 points)
Consider the flow of water through a venture meter, as shown in Fig. A manometer is placed in the line to measure the pressure difference from the inlet to the throat. For the dimensions given, determine the volume flow rate of water through the meter.

