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ABSTRACT

A precise evaluation of soil quality (SQ) is important for sustainable land-use planning. An assessment of SQ was done in
674.13 km® (67413 ha) of the agricultural lands in west of Kafr El-Sheikh Governorate, Egypt. Thirty soil profiles were dug and samples
were collected and analyzed for different physicochemical properties. A score was assigned for each SQ indicator using linear scoring
function. The soil quality index (SQI) was computed using three indices; additive index, weighted additive index and Nemoro index.
Each SQI was calculated using two methods of indicator selection; total dataset (TDS) and minimum dataset (MDS) extracted by
principal component analysis (PCA). Results showed that electrical conductivity, calcium carbonate, silt, bulk density and water holding
capacity were included in the MDS that accounted for 84.37% of the total variance of the TDS. High significant correlations occurred
between SQIs calculated using TDS and MDS under the three models, indicating high efficiency of the PCA to establish a MDS for the
study area. The highest correlation and most prediction occurred when applying the weighted additive index. Further investigations are

recommended to appraise indicators included in the MDS.

Keywords: Factor analysis, Minimum dataset, Soil quality index, Spatial analysis, Kafr El-Sheikh

INTRODUCTION

Soil quality (SQ) is defined as "the capacity of a
soil to have a biological function, to sustain plant and
animal production, to maintain or enhance water and air
quality and support human health and habitation" (Vincent
et al., 2018). The process of predicting the capacity of a
soil for performing a certain function is known as SQ
evaluation (de La Rosa, 2005). This is a valuable decision-
making tool to grade croplands, adopt suitable
management and conserve resources and to establish an
early alarming system for the potential decline in soil
multi-functionality (Schloter et al., 2018).

Quantitative assessment of SQ includes three steps:
(1) selecting soil properties known as indicators, (ii)
scoring, and (iii) integrating the scores into a single index
(Guo et al., 2017). The total data set (TDS) and minimum
data set (MDS) are used for indicator selection; the former
is a variety of indicators based on specific properties of
soil, while the latter is a collection of a minimum number
of indicators based on correlations among indicators
(Rahmanipour et al., 2014). Scores are assigned to each
indicator using linear and/or none linear scoring functions
(Raiesi, 2017). The scores are finally combined into an
index using various models including additive quality
(AQI), weighted quality (WQI), and Nemoro quality
indices (NQI) (Nabiollahi et al., 2017).

A high number of soil physicochemical properties
are included in quality indexing. However, as measurements
of indicators are time-consuming, developing simple and
effective indices based on the most informative and reliable
indicators is of great importance (Pascazioa et al., 2018).
Multivariate analysis such as principal component analysis
(PCA) is a data reduction tool used for reducing indicator
loads and avoiding data redundancy (Armenise et al., 2013).
It uses TDS of indicator to extract the appropriate ones in the
form of MDS to be included in SQ indexing. The MDS is a
site-specific of which the applicability to certain soil type,
region, and land wuse should be appraised before
recommendations (Biswas et al., 2017).

The spatial analysis or spatial statics in the geographic
information system (GIS) includes the analytical techniques
that study entities in conjunction with their dimensions and
associated attributes (ElBaroudy, 2015). Interpolation
predicts unknown values of any geographic point using a
limited number of known points. It depends on the

assumption that things that are close to one another are more
alike than those that are farther apart (Xie ef al., 2011). One
of the most common interpolation methods is the inverse
distance weighted (IDW) that is widely used in agricultural
practices (Moghanm, 2015). The IDW estimates cell values
by averaging the values of sample data points in the
neighborhood of each processing cell. The closer a point is to
the center of the cell being estimated, the more influence, or
weight; it has in the averaging process (ESRI, 2014).

Surface soil samples are used for assessing SQ;
however, soil-environment functionality is affected by
inherent as well as anthropic aspects (Karlen ez al., 2013).
Thus, assessing SQ using surface soil solely gives an
incomplete vision, since crop yield is affected by surface and
subsurface soil properties (Vasu et al., 2016). Using data
reduction techniques allows increasing the intensity of soil
sampling, providing a better evaluation of SQ from a spatial
analysis point of view (Rahmanipour et al., 2014). In this
respect, the goal of the current work was to use
physicochemical properties of soil profiles in some
agricultural lands in Kafr El-Sheikh Govemorate, Egypt for
evaluating soil quality in the study area using selection
methods of TDS and MDS and three indexing models to
select the most appropriate model.

MATERIALS AND METHODS

Site description

The area is located in west of Kafr El-Sheikh
Governorate, Egypt between 30° 27" 48" - 30° 29’ 27" E and
31° 03’ 43" - 31° 22’ 53" N (Fig. 1) with a total area of
674.13 km® (67413 ha). According to Said (1993), the area is
covered with deposits of neonile which accumulated during
the late Pleistocene era. Abuzaid et al. (2018) showed that
the main landscape in the area is floodplain that includes five
geomorphic units, ie. levee, overflow mantle, recent
terraces, middle terraces, and old terraces. Based on EMA
(2011) and Soil Survey Staff (2014), the soil temperature
regime is "Thermic" and the moisture regime is "Torric".
Soil sampling and analysis

Thirty soil profiles were geo-referenced (Fig. 2)
using the GPS and dug to 150 cm depth. They were
described according to FAO (2006). A number of 90 soil
samples (disturbed and undisturbed) were collected from the
horizons. Samples were air dried, grounded and sieved
through a 2-mm mesh. Soil chemical analysis, including pH
in 1 : 2.5 soil-water suspension, electrical conductivity (EC)
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in soil paste extract, cation exchange capacity (CEC),
exchangeable sodium percentage (ESP), organic matter
(OM) and calcium carbonate were determined according to
standard methods of Sparks er al (1996). Soil physical
analyses, including particle size distribution using the pipette
method, bulk density (BD) using core method, total porosity
(TP), water holding capacity (WHC) infiltration rate (IR)
and penetration resistance (PR) were performed according to
Flint and Flint (2002).
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retained for the MDS since they are the most representative
of SQ (Biswas et al., 2017). If more than one variable was
retained under a PC, a multi-variate correlation was used to
decide which was included. Well-correlated variables were
considered redundant, and thus highest loaded was only
included in the MDS. When the highly weighted variables
were not correlated, each was considered important and
was selected in the MDS (Guo et al., 2017).

Fig. 1. Location map of the study area

Assessment of soil quality (SQ)
1. Indicator selection
Total data set (TDS)

Fourteen parameters were selected in TDS for their
sensitivity in SQ appraising (Table 1). Obtaining a unique
value for the whole soil profile, weighted mean value
(WMV) for each indicator (property) was calculated by
multiplying value of the property by the thickness of soil
horizon and dividing the resultant by the depth of soil
profile. Before calculations, soil pH data were converted to
hydrogen ion concentrations and were then transformed
back into pH.

Minimum dataset (MDS)

The MDS was established through the PCA. Only
the factors with eigenvalues of > 1 and those that explained
at least 5% of the variation in the data set were chosen. For
each PC, only highly loaded variables (having absolute
values within 10% of the highest factor loading) were

Table 1. Dataset for soil quality assessment
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Fig. 2. Geomorphic map (After Abuzaid, et al, 2018)
and locations of soil profiles
2. Indicator scoring
A score ranging from 0 to 1 was assigned to each
indicator through the linear scoring function (Raiesi, 2017)
using three standard scoring functions; low is better (Eq.
1), more is better (Eq. 2) and optimal range (Table 1).

Xmin
LS = ? )
LS = — @

‘Where LS is the linear score, X is the indicator value and Xy, and
Xmax are the minimum and maximum value respectively of
each indicator.

Indicator Associated soil function SSF  Optimal range Limits reference
Sand LB

Silt Fertility, structure, erosion & water retention MB

Clay Y, ’ OR 25% Armenise et al. (2013)
OM

%HC Water storage and availability lé)/lfli 0.3 em hr! FAO (1985)

BD Soil structure LB

TP Water and air movement OR 50% Expert opinion

EC Microbial activity and plant growth OR 02-2dSm™ Rahmanipour et al. (2014)
pH Nutrients and rooting relations OR 7 Nabiollahi ez al. (2017)
CEC Nutrient retention MB

ESP Water infiltration and movement LB

IC)ﬁCO; Root penetration and water relations Iﬂg

OM, organic matter; WHC, water holding capacity; IR, infiltration rate; BD, bulk density; TP, total porosity; EC, electrical conductivity; CEC,
cation exchange capacity; ESP, exchangeable sodium percentage, PR; penetration resistance, SSF, standard scoring function; MB, more is

better; LB, less is better; OR, optimum range.

More is better function was applied to indicators being
preferred when in high values, while less is better function
was applied to indicators restrict good soil functionality when

in high values. For optimum range function, indicators were
scored as more is better up to a threshold value then scored as
less is better above this threshold.
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3. Developing soil quality indices (SQIs)
1. Additive quality index (AQI)
This index was calculated according to Nabiollahi

et al. (2017) using the following equation:

AQI =31, 3

Where S is the score of the indicator and n is the number of
indicators used in the index.

2. Weighted additive quality index (WQI)

Each indicator was assigned a weight value by
means of PCA. For the TDS, weights were calculated as
the quotient of the communality of indicator divided by the
sum of the communality of all indicators (Guo et al,
2017). Weights of MDS were calculated based on variation
of the PCA (Mukherjee and Lal, 2014). The variation of
each respective PC (%) was divided by the total percentage
of variation of all PCs with eigenvectors > 1. The WQI
was calculated according to Raiesi (2017) as follows:

WQI =YL, W; xS; )
‘Where W is the weight value of the indicator and S is the score of
indicator

3. Nemoro quality index (NQI)

This index evaluates soil quality based on the
minimum and average scores of indicator (Guo et al.,
2017; Nabiollahi et al., 2017) as follows:

Pa%ver"'Pl%lin n-1
NQI = ’T X o Q)]

‘Where P,,.. and P, are the average and minimum of indicator scores,
and n is the number of indicators included in calculations.

Statistical and spatial analysis

The statistical analysis was carried out using IBM
SPSS 19.0 software and Microsoft Excel. The correlation
and regression between SQIs computed from TDS and
MDS was analyzed to verify how well the MDS
represented the TDS. Spatial analysis of SQIs was
executed using ArcGIS 10.2.2. The interpolation was
performed using the inverse distance weighting (IDW).
The raster layers were reclassified into five equal intervals
to identify SQ grades, i.e. I, Il III, IV and V (very high,
high, moderate, low and very low, respectively). The raster
to polygon tool was used to extract area of each grade.

RESULTS AND DISCUSSION

Soil physicochemical properties

The soils were very deep (depth > 150 ¢cm) and flat
to gently sloping (slope < 2%). According to Soil Science
Division Staff (2017), the soils were slightly to moderately
alkaline (pH 7.36-7.99), and none to moderately saline
(EC 1.35-8.36 dS m™) as shown in Table 2. The ESP
ranged from 6.15 to 37.45, indicating none to high sodicity
(alkalinity) hazards (FAO, 1988). In north Nile Delta,
salinization and sodifiction result from Mediterranean
seawater intrusion besides poor soil and water management
practices (Mohamed, 2017). Particle size distribution
(PSD) indicated ranges of 13.01 to 35.82% for sand, 16.30
to 43.44% for silt, and 25.92 to 65.80% for clay. Soil
textural classes included clay, clay loam and loam, with
clay being the most predominant class. The soils showed
variation in CaCOj ranging from 21.21 to 39.10 gkg™.

Table 2. Weighted mean average of soil properties
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1 748 1.81 12.06 2821 24.16 29.19 2748 40.10 3242 CL 1.80 3196 36.15 0.34 338
2 7.81 543 12.83 2425 825 24.04 28.68 4344 2788 CL 1.69 36.23 3698 048 3.08
3 7.73 512 16.73 33.03 11.87 2121 2480 3724 3796 CL 191 27.81 39.01 026 4.00
4 7.76 529 1247 3727 807 23.15 2651 3066 4283 C 1.67 36.83 3655 020 3.00
5 7.55 193 1236 35.62 23.62 29.65 2695 3211 4094 C 1.78 3283 37.15 022 335
6 7.79 494 1341 2412 832 2679 3094 2675 4231 C 1.71 3551 37.12 020 3.16
7 7.85 492 18.60 31.99 10.82 22.06 21.79 3468 4353 C 190 2845 3708 0.23 3.68
8 7.75 6.03 1390 3427 1279 2429 1999 3359 4642 C 191 28.08 3794 021 393
9 749 846 18.14 41.03 1838 3333 23.10 29.74 47.16 C 1.89 2853 3730 0.19 3.88
10 7.57 155 1241 2555 990 2784 2778 4285 2937 CL 1.88 29.13 37.15 041 3.76
11 7.68 578 12.50 33.61 11.89 29.13 2452 3686 38.63 CL 1.84 3057 3613 025 3.63
12 7.70 159 1278 37.51 9.15 2629 2745 2944 43.12 C 1.84 3042 3765 0.19 3.66
13 753 756 1743 43.16 1696 33.04 2199 2840 49.61 C 1.88 29.06 37.75 0.18 3.85
14 7.63 562 1455 35.02 1226 31.61 2436 3570 3994 CL 1.83 31.09 3655 024 347
15 7.56 7.55 1838 39.53 11.50 34.83 21.05 31.56 4739 C 1.89 2879 3923 020 391
16 7.68 682 1746 39.09 1536 3356 1544 3639 48.17 C 191 2792 39.12 022 4.07
17 7.89 1.71 17.13 34.12 16.64 3247 3582 2496 3922 CL 199 2478 3581 021 453
18 7.76 7.11 18.01 51.89 3728 2511 2157 1879 59.65 C 192 2770 4038 0.18 4.00
19 745 135 10.76 5725 34.00 3507 1790 1630 6580 C 1.87 29.55 39.73 022 3.70
20 7.80 6.13 21.60 51.51 37.45 2427 1620 2459 5921 C 190 2834 3930 021 393
21 799 191 1698 35.67 1584 2924 3268 2632 4100 C 190 2819 3690 0.19 3.84
22 7.83 7.62 20.52 44.81 3693 2339 1624 2438 5938 C 194 2698 43.11 021 416
23 741 244 1292 5512 30.77 3220 13.01 2266 6434 C 1.89 28.68 4336 024 3.85
24 7.74 7.13 16.85 3253 13.03 3230 3221 3040 3739 CL 1.82 3140 3650 0.23 3.67
25 771 372 987 2255 6.15 29.74 3383 4026 2592 L 1.63 3849 38.00 0.58 295
26 736 743 15.69 3536 10.89 36.74 30.68 28.68 40.65 C 191 28.08 3750 0.20 433
27 7.75 543 1292 3334 1272 3575 31.18 3050 3833 CL 1.85 30.15 36.60 023 3.71
28 7.74 3.65 883 3623 678 2923 2123 37.13 4164 C 1.70 36.04 3725 024 3.19
29 7.78 396 9.78 2518 737 30.78 2458 3462 40.79 C 1.71 3536 3672 023 3.25
30 749 886 18.11 3745 11.87 39.10 1945 3492 4563 C 192 2770 37.62 021 4.17

EC, electrical conductivity; OM, organic matter; CEC, cation exchange capacity; ESP, exchangeable sodium percentage; C, clay; CL, clay loam;
L, Loam; BD, bulk density; WHC; water holding capacity; IR, infiltration rate; PR, penetration resistance
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Little variations in PDS and CaCO; among the soils
could be attributed to homogenous parent materials of fluvial
origin (Embabi, 2018). The soil OM was very low to
moderate (Hazelton and Murphy, 2016) with a range of 8.83
to 21.60 g kg™ due to high temperature (Jafari et al., 2018).
The CEC varied from moderate to very high (Hazelton and
Murphy, 2016), as it ranged from 22.55 to 57.25 cmolc kg
Soil WHC was high (Pulido ef al., 2017) with a range of
35.81 to 43.36%. The soils had low to medium water
infiltration rate (FAO, 1985), since it ranged from 0.18 to
0.58 cm hr'. The BD varied from moderate to very high
(Hazelton and Murphy, 2016), as it ranged from 1.63 to 1.99
Mg m”. Total porosity (TP) ranged from 24.78 to 3849%.
The PR ranged from 2.95 to 4.53 MPa, indicating compact
to very compact soils (Medvedev, 2009).

Correlations among soil properties

The CEC and WHC showed a high positive
significant correlation (P < 0.01) with clay, but high negative
significant ones with sand and silt (Table 3). The BD had a
high significant positive correlation with clay, but a high
significant negative correlation with slit and a significant
negative one (P < 0.05) with sand. On the other hand, the TP
and BD had a high significant negative correlation with clay,
but a high significant positive correlation with slit and a
significant positive one (P < 0.05) with sand. The IR showed
high negative correlations (P < 0.01) with clay and BD, but a
high positive one with silt. The PR had high negative
correlations (P < 0.01) with clay and BD, but high positive

ones with silt and TP. It has been reported that soil PSD is a
key factor for controlling soil physicochemical properties
(Khaledian et al., 2017). The fine particles of clay and silt,
unlike coarse ones of sand, have a higher specific surface
area, thereby increasing soil sorption capacity (Blume et al.,
2016b) and water retention (Blume et al, 2016a). In
addition, fine particles have higher pore space, and thus
increase soil porosity (Blume er al, 2016a). The fine
fractions also induce decreases in water movement by
blocking the effective pores due to their small sizes, and bulk
density for their relatively lower density of 1.0-1.6 Mg m™
compared with 1.4-1.8 Mg m* for sands (McCarty et al.,
2016). Increase in bulk density causes soil compaction due
to the reduction in soil porosity, and thus restrict root
penetration (Shah et al., 2017)

The principal component analysis (PCA)

The PCA (Table 4) show that the first five PCs had
eigenvalues >1 and explained 84.37% of the variance for
TDS. The eigenvectors after VARIMAX rotation indicated
that WHC had the highest loading value, and sand and clay
had values within 10% of this value. As the three
parameters were significantly correlated with each other,
the WHC was considered for PC1. In the same manner,
BD, TP and PR were highly weighted and well correlated,
thus the BD was selected for PC2. On the other hand, silt,
EC and CaCOs had the highest loading under PC3, PC4,
and PCS5, respectively. Hence they remained in the MDS.

Table 3. Correlation matrix among soil physicochemical properties

Indicator pH EC OM CEC ESP CaCO; Sand Silt Clay BD TP WHC IR PR
pH 1.00

EC 0.101  1.00

OM 0.516" 0.485™ 1.00

CEC -0212° 0.03 0.056 1.00

ESP -0.280" -0.08 -0.224" 0.665" 1.00

CaCO; -0.266" 0.05 -0.275" 0.143  0.085 1.00

Sand 0.267" -0.217" -0.108 -0.642-0.399"" 0.065 1.00

Silt 0.021 0.07 -0.009 -0.7117-0.585" -0.143 0.095 1.00

Clay -0.188 0.09 0.076 0.9157 0.669" 0.058 -0.716"-0.763" 1.00

BD -0.108 0.03 0.110 04547 0367 0.176 -0.251" -354" 0.411" 1.00

TP 0.108 -0.03 -0.110 -0.454-0.367 -0.176 0.251" 0.354" -0.4117-1.000" 1.00

WHC -0.099 -0.12 -0.109 0.134 0.122 -0.144 -0.046 -0.102 0.101 -0.204 0.204 1.00

IR 0.121 -0.12 02117 -0.420" -0.119 -0.128 0.201 0.537" -0.507 " -0.405" 0.405" -0.100 1.00
PR -0.1520.04 0.036 0.370" 0.3317 0.224" -0.178 -0.332" 0.348" 0.9217 -0.921" -0.201 -0.365"" 1.00
Table 4. Results of the PCA of soil properties in the study area

PCA parameter PC1 PC2 PC3 PC4 PCS

Eigenvalue 5.367 2.160 1.960 1.260 1.060

Variance (%) 38.330 15.420 13.990 9.030 7.590

Cumulative (%) 38.330 53.760 67.740 76.770 84.370

Weighting factor 0.454 0.183 0.166 0.107 0.090

Indicator Eigenvectors Communality Weight
pH -0.365 -0.089 0.320 0.189 0.677 0.738 0.063
EC 0.084 -0.005 -0.006 0.891 -0.055 0.803 0.068
OM -0.051 0.100 0.178 0.671 0.572 0.823 0.070
CEC 0.783 0.237 0.451 0.009 -0.082 0.879 0.074
ESP 0.715 0.215 0.209 -0.304 -0.114 0.706 0.060
CaCO3 -0.133 0.124 0.274 0.100 -0.839 0.823 0.070
Sand -0.819 -0.118 0.117 -0.322 0.021 0.802 0.068
Silt -0.433 -0.155 -0.796 0.212 0.017 0.891 0.075
Clay 0.836 0.186 0.482 0.060 -0.025 0.969 0.082
BD 0.183 0.961 0.163 0.022 -0.030 0.984 0.083
TP -0.183 -0.961 -0.162 -0.022 0.030 0.984 0.083
WHC 0.874 0.060 0.009 -0.004 0.028 0.769 0.065
IR -0.068 -0.288 -0.762 -0.211 0.003 0.713 0.060
PR 0.128 0.939 0.132 0.003 -0.110 0.928 0.079

* Bold face factor loading are considered high weighted

** Underlined and italic face factor loading are selected as MDS

336



J. Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 9 (8), August, 2018

Assessment of SQ
1. According to TDS

The spatial distributions of SQ grades under two
indicator methods and three indices (Table 5 and Fig 3)
reveal that moderate quality (Grade III) was predominated
when applying the three indices, and occupied around half
of the total area, while very low quality (Grade V)
represented the lowest portion. According to AQI, soils of
Grade III occupied 48.01% of the total area, while the

Table 5. Soil quality classification in the study area

remaining area was occupied by soils of Grades L, II, IV,
and V, representing 2.88, 16.08, 29.22 and 3.81%,
respectively. Using WQI model, 47.82% of the area
belonged to Grade III, while 2.61, 20.04, 26.20 and 3.33%
of the area belonged to Grades I, II, IV and V, respectively.
The distribution of SQ grades when applying NQI model
was as follows: 1.85% for Grade I, 25.67% for Grade II,
48.69% for Grade 111, 20.64% for Grade IV, and 3.15% for
Grade V.

Grades
Indicator Index Very high High Moderate Low Very low
| 11 111 |\Y \4
Score <0.67 0.67 - 0.69 0.69-0.71 0.71-0.73 >0.73
AQI Area, km* 19.43 108.39 323.66 197.00 25.66
Area, % 2.88 16.08 48.01 29.22 3.81
Score <0.67 0.67 - 0.69 0.69-0.71 0.71-0.73 >0.73
TDS WQI Area, km* 17.60 135.10 322.36 176.63 22.45
Area, % 2.61 20.04 47.82 26.20 333
Score <0.47 0.47-0.49 0.49-0.52 0.52-0.54 >(.54
NQI Area, km® 12.48 173.04 328.26 139.15 21.20
Area, % 1.85 25.67 48.69 20.64 3.15
Score <0.70 0.70 - 0.75 75-0.79 0.79-0.84 >(0.84
AQI Area, km* 50.72 253.64 276.85 78.30 14.63
Area, % 7.52 37.62 41.07 11.61 2.17
Score <0.77 0.77-0.80 0.80-0.83 0.83-0.86 >0.86
MDS WQI Area, km* 42.12 232.92 295.39 91.93 11.77
Area, % 6.25 34.55 43.82 13.64 1.75
Score <045 0.45-0.50 0.50-0.56 0.56 - 0.61 >0.61
NQI Area, km* 88.89 347.93 162.57 60.69 14.05
Area, % 13.19 51.61 24.12 9.00 2.08

TDS, total dataset; MDS, minimum dataset; AQI, assertive quality index; WQI, weighted quality index; NQI, Nemoro quality index.
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Fig. 3. Soil quality maps in the studied area

2. According to MDS

Soils of Grade III dominated the area when applying
AQI and WQI and those of Grade II were predominant
under NQI, while soils of Grade V occupied the smallest
areas under the three models (Table 6 and Fig. 3). For the
AQI, 41.07% of the area was represented by soils of Grade
M1, while the remaining area was occupied by soils of Grade
1(7.52%), Grade 11 (37.62%), Grade IV (11.61%) and Grade
V (2.17%). Under WQI model, 43.82% of the area belonged
to Grade III, while the remaining area belonged to Grades I,
I, IV and V, repressing 6.25, 34.55, 13.64 and 1.75%,
respectively. In contrast to the other models, results of NQI

model showed that Grade II accounted for half of the area
(51.61%), while 13.19% for Grade 1, 24.12% for Grade III,
9.00% for Grade IV and 2.08% for Grade V.
Comparison of indices

The linear relationships (Fig. 4) showed high
significant correlations (P < 0.01) between SQIs calculated
using MDS and TDS with different models. This result
indicates that MDS well represented the TDS in the study
area, and could be used to track temporal changes in SQ (Qi
et al., 2009; Guo et al., 2017). The PCA is a powerful tool to
assess MDS for different soil types (Armenise et al., 2013;
Biswas ef al., 2017). Values of R? between TDS and MDS
were 0.71, 0.80 and 0.49 for AQL, WQI and NQI,
respectively. Consequently, the most suitable model for the
area was WQL. This is similar to studies of other agricultural
lands in arid and semi-arid regions. Rahmanipour et al.
(2014) obtained a high correlation between MDS and TDS
when applying WQI compared with NQI. Moreover,
Nabiollahi et al. (2017) reported that WQI and MDS
approach can adequately represent the TDS rather than AQI
or NQI. This trend could be attributed to using weights of
indicators that discriminates the importance of each soil
property independently. For the WQ], all selected indicators
are considered but directed by their relative importance, with
highly weighted parameters being key factors. For NQI
model, in contrast, indicator with the lowest score is added to
the scores average, assigning it preferential importance. In
other words, NQI gives more importance to the lowest score
parameter, without considering its weight (Qi et al., 2009;
Guo et al., 2017). Similar to NQI, the AQI is determined
without considering the relative weights of indicators. In
addition, it is subjective and relies mainly on researcher's
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opinion; however it is easier to implement rather than others
models (Mukherjee and Lal, 2014; Nabiollahi et al., 2017).
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Fig. 4. Linear relationship between soil quality indices
calculated total dataset and minimum dataset

CONCLUSION

The PCA provides an effective tool to establish a
MDS in the study area to reduce time and cost of sampling
an analysis. Among various soil physicochemical properties,
EC, CaCO;, silt, bulk density and water holding capacity
were considered in the MDS. For the TDS, Grade III
occupied nearly half of the area under AQL WQI and NQI
models, while Grade II was predominant when applying
MDS under WQI and NQI. The highest correlation and
most prediction occurred when applying the WQIL This
model would be to track temporal changes in SQ in the
study area in response to management practices and
environmental risks. However, indicators included in the
MDS should be assessed over time.
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