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Abstract.

The frce vibration mode shapes have certain speeial properties whieh are very
useful in structural dynamic analysis . For structures with a large number of joints
, it is often necessary to reducc the number of degrees of freedom hy simplifying
the strueture or by condensing the stiffness and mass matrices . Three papular
methods of condensation applied in dynamie structures are presented . The
natural frequencies and corresponding modal shapes for convex , eoneave and
concave-convex cable roofs are studied . Also, effect of mitial tensions in cables |
both sag and rise to span ratics , distance between vertical ties , and symmetnic
and asymmetric of loads on the frequeneies for all three types of roofs are
outlined . All computer programs for construction of overall stiffness and mass
matrices , solution of free wvihranon equation using exact tcchnique and
eondensation are constructed by the author .

1- Introduction

Pretensioned cable roof structures are in general lighter and their roof more
flexible than other forms of constructions . Also , their height-to-span ratios are
usually relatively smaller . The cable roofs wiil be quite stiff if tensioned to a
level which ensures that both sagging and rising cables remain in tension under
any combination of loading . The anthor [1,2.3] studied the optimum shape and
dimensions for convex , concave and concave-convex cable roofs and
recommended to complete the study by studymg the eigenproblem analysis for
these types of cable roofs .
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A complete dynamic analysis of a structure must involve the frequency
analysis .

Also , the applieation of the response spectrum for earthquake design of
structures requires the determination of the natural frequencies and modal shapes
. The dynamic response of any linear structure can readily be obtained after its
vibration mode shapes and frequencies have been determined . The natural
frequencies of a structure will , if the frequency spectrum of the dynamic loading
is known , indicate whether or not the siructure is likely to respond dynamically.
The shapes of the modes will indicate in which way the structure is likely to
respond and the best position for placing artificial dampers if required .

For large structures , the solution of the corresponding eigenproblem to
determine natural frequencres and modal shapes will be difficult and expensive .
Also , in most practical cases , onlty a relatively small number of modes need be
consydered in the analysis to obtain adequate accuracy . So that , the reduction of
the number of degrees of freedom before determunation of natural frequencies and
modal shapes is needed . A brief review of reduction techniques have been
mentioned in the following item . A numencal example for multi-story shear
building to compare between the common condensation methods used in this
paper s proposed . Finally , the natural frequencies and modal shapes for three
types of cable roofs shown in Figs, ll-al, [1-b] and [1-cl are proposed . The
influence of lumped and consistent mass inatrices on vibration characteristics of
three dimensional cable roofs have been examined . Also, the influence of design
parameters on the natural frequencies of cable roofs is taken into considerations
141.

2- A brief Review of Eigenproblem Analysis

Numerous techmques for the reduction of the number of coordinates used in
modeling structural dynamic systems have been proposed . The practical
application of these techniques , however requires judicious selection of both the
particular coordinates to be reduced and the specific reduction process . A survey
of the published hterature shows that the first major step towards a method of
reducing or condensing te dimension of the eigenproblem of a siructural
dynamic system , appeared in the paper published by (5] . The relation between
the pnmary and unwanted (secondary) degrees of freedom in the static
condensation proposed by I5] is found by establishing the static relation between
them . Also , in order to reduce the mass and stiffness matrices , it was
considered that the same static relation remain valid for the dynamic problem and
the reduced matriees have the property of considering both the potential and
kinetic energies of the system . An equivalent algorithm to reduce the stiffness
and mass matrices is presented byl6! . Also , a technique which reduces the
dynamic problem using the flexibility method is presented by 17) .
The algorithm proposed by i8] describes the determination of the number of
frequencies lower than any chosen frequencies . Also , the paper published by
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(9] describes a bound algorithms to measure the accuraey of eigenvalue problem
solutions obtained atter system reductions . By expanding in series the expression
containing the eigenvalue , and by neglecting the higher-order terms , Geradin (91
derived an expression for the transformation of coordinates as weil as for the
reduced stiffness and mass matrices . To obtain the modal shape in terms of alt
coordinates in the original medeling of the structure using the back-
transformation , the exact relation between primary and secondary coordinates 1s
recommended by [10] . This transformation is affected by the errors introduccd in
the calculation of the eigenvalue of the reduced system . The methods proposed
by (11,12! give more accurate results after reducing coordinates . To minimize the
error  introduced In the reduction process , a number of authors
10,13,14,15,16,17! have developed algorithms for that purpose . Various
techniques for coordinate reduction of structural dynamic problem , are presented
in a number of books as [18,19,20,21,221 .

3- Methods of Computation Eigenproblem

If it is assumed that the natural frequencies and mode shapes are not
significantly affected by the amplitude cof vibration, then both eigenvalues and
elgenvectors may be found by the eigenproblem equation :

[k-0MI){Y) = {0) (1
where

fK] = the tangent stiffness matrix at the static equilibrium position ;

[M] = the lumped or consistent mass matrix ;

{Y} = the mode shape vector ; and

w? =an N*N diagonal matrix of the square of the naturat angular frequencies
corresponding to the mode shape .

The formulation of eq. (i} 1is an important mathematical problem for
eignproblem and its nontrivial solution requires that the determinant of the matrix
factor of {YT be equal to zero as :
| ko2 =0 )

I large cable structurcs | it is sometimes necessary to divide a structure into a
large number of elements because of change in geometry , loading , and or
material properties . In this case , the number of degrees of freedom , may be
quite_large . As aconsequence , the stiffness and mass matrices will be of large
dimensions . The solution of the corresponding eigenproblem will be difficult and
expensive . In such cases , it is desirable Lo reduce the size of these matrices in
order to make the sclution manageable and economical . Such reduction is

referred to as condensation . Three popuiar methods of condensation are
mentioned below .

3-1 Static Condensation Applied to Dynamic Problems 15,20,22,23]
The static condensation method is proposed by (5] . In order to describe this
method , consider s are the secondary eoordinates to be condensed and p are the



C28 M. Naguib .

primary coordinates (remaining coordinates) . With this arrangement , the
stiffness equation for the structure may be written using partiion of matrices as
[Kss} }(Ksp) [[3Ysh | ][40}
[Kpsj » {Kppl [ {Yp} {Fp}

where {Ys} and {Yp} are the displacement vectors correspondmng to s and p
degrees of freedom , respectively . Expanding eq.(3) into two equations , it can be
written as

()

[Kss]{Ys} + [Ksp]{Yp} = {0} 4)

?E?Js]{‘l’s} + [Kppl{Yp} = {Fp} (%)
Equation (4) is equivalent to

(s} = [T} Yo} ®
where [] is the transformation matrix given by

(%] = -{Kss]{Ksp) @)

Substitution eq.(6) and using eq.(7) in eq.(5) results in the reduced stiffness
equation as :

(e J{Yp} = {Fp} (8)
where [y ] is the reduced stiffness matrix given by
(%] = {Kppl-(Kps][Kss] 1 [Ksp] ©)
Equation {(6) can be rewritien in the form
{Y}=[TH{Yp} (10
where
(Ys) &
(V) = peeland [T} = oo ()
{Yp} (11

Substituting eq. (10) and (11} into eq. (3) and pre multiplying by the
transpose of [T] resuits in :

{0}
(TR Y} = [fxIT ) |77 (12)
{Fp}
and using eq. (8)
(1= [TIVK](T] (13)

At this stage of elimination process the stiffness equation (3) has been
reduced to
o - )

S et Rl o ’ (14)
[0] [i] {YP} {FP}
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In this way , the Gauss-Jordan elimination proccss yields both transformation

matrix [7] and reduced stiffness matrix [ ] . There is , thus no need to calculate
[Kss]-1 in order to reduce the secondary coordinates of the sysiem . Also, the
static condensation method is valid o use in dynamic problem . Hence , the same
transformation based on stalic condensalion for the reduction of the stiffness
matrix is also used in reducing the mass matnices . Specificaily , if [M] is the
mass matrix of the system , then the reduced mass matnx is given by

[¥a] = (TITM(T) (12)
3-2 Dynamic Condensation Method
This method has been recently proposed by 124,25,26] as an extension of the
static condensation method . Thc eigenproblem eq.(1) can be rewntten in the
form :

[Kss].-ca%[Mss] ! [Ksp] - w%[Msp] {Ys} {0}

e el e TSP (16)

[Ksp] -0 Mppll  [Kpp] - @ Mpp] || (Y0} | |{0)

Where w:‘:— is the approximation of the ith eigenvalue which was calculated in
the preceding step of the process . To start the process one takes an approximare
or zero value for the first eigenvalue m%

The following three steps are executed to calculate the ith eigenvalue 0)-3‘ and

the corresponding eigenvector {Y'}; as well as an approximation of the eigenvalue

of the next order w.:-, \

Step 1. The approximation of m-?‘ is ntroduced in cq. (16) ; Gauss- Jordan
elimination of coordinates {Y's} is then used to reduce eq, (16) o
| — 1
URERCTIN AR I

---.-i.._..._-.. memmea| = e (17}
ORETHIN K B R

Step 2. The reduced mass and stiffness matrices are calculated respectively as
5l = [TiTIM)T] (18)
and

(i) = [pil + o [xad (1)

where the transformation matrix [Ti] is given by eq. (11) and the reduced

dynamic matrix [y;] is defined in eq.(16) .
Step 3. The reduced eigenproblem
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(i - o wmil{Yp} = {0} (20)

is solved to obtain animproved eigenvalue m% , and also an approximation

for the next order eigenvalue w%_’_\ )

This three-step process may be applied iteratively . Experience has shown
that one or two such iterations will producc virtuaily exact etgensolutions . Once
an eigenvector {Yp} for the reduced system is found, the ith modal shape is
given by eq. (10) .

3-3 Modified Dynamic Condensation Method (27

In this modification , the reduced stiffness matrix [y ] is calculated only one

by simple elimination of s disptacements m eq. (16) after setting wZ =0, Also,
the reduced mass matrix for any mode i is calculated from

(il = j{[i]—[{;in 21)

1

As can be seen , the modified method requires , for each eigenvalue
calculated , only the application of thc Gauss-Jordan process to eliminate s
unknowns in a inear system of equations such as the system in eq. (16) .

3-4 Mass Properties [19,201.
3-4-1 Lumped-Mass Matrix .

The simplest procedure for defining the mass properties of any structure is to
assume that the entire mass is concentrated at the points at which thie translational
displacements are defined . The lumped-mass matrix is diagonal .

In which m'is the unit mass per unit length of the element , the lumped-mass
matrix for cable element is given by

pa=2E 00 0 (22)

where ([ ) is a special symbol used for diagonal matrices .
3-4-2 Consistent - Mass Natrix

The dynamic analysis of a consistent-mass system generally requires
considerably more computational effort than a lumped-mass system does , for two
reasons :

(1) The lumped-mass matrix is diagonal , while the consistent-mass matrix
has many off-diagonal terms .

(2) The rotational degrees of freedom cun be eliminated from a lumped-mass
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analysis , whereas all rotational and translational degrees of freedom must be
included in a consistent-mass analysis .
The consistent-mass matrix for cable element is given by :

2 0 01 0 0
60 2 0 0 1 0
! g
M= L 60 0 2 0 0 ! 23)
1 0 0 2 0 O
0 1 0 0 2 0
0 0 I 0 0 2
3-5 System Stiffness Matrix [19]
The stiffness matrix for pin-jointed pretensioned link is given by :
GGT .GGT .
_EA-T0 o 24
[K) == - (29)
-GGT  GGT -1

where E is the moduies of elasticity , A is an area, T0 is the initial tension ,Lgis
the initial length , ['is a unit matrix ot dimension (3*3), and GT = §{ m n}T and
1, m, nare the direction cosines of the member .

4- Numerical Example .

A Simple type of structure , known as a shear building is selected to
demonstrate the effectiveness of popular methods of condensations . The number
of degrees of freedom is equal to the number of stories in the building . The six-
stories analyzed frame with the stiffness and mass properties are shown in Fig,.
[2-al . The multimass spring modeled and the free body diagram for the frame are
shown in Figs. [2-bl and [2-c!, respectivelv .

The stiffness [K] and mass [M] matrices for the frame are given as :

Kj= | 22000 -10000 0 0 0 0
10000 18000 -8000 O 0 0

0 -B000 14000 -6000 O 0

0 0 -6000 10000 -4000 O

0 0 0 -3000 6000 -2000

0 0 0 0 -2000 2000

and M]=[21 18 15 12 9 6]

The number of degrees of freedom is sondensed from six to three only . The
_redf.lced coordinates were numbers [.3 and 5 . The results shown in Table (1)
indicates the following (1) Statie con.lensation method produces only the
fundamental frequency with an acceptable value ; fugher frequencies have ;:rrors
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of about 7% ; and (2) Dynamic and modified dynamic condensation methods
give virtually the same values for the natural frequencies as those obtained ucing
the complete model without condensation .
5- Eiegenvaiues Eigenveciors for Cable Roofs .
5- Analysis Considerations .
The eigenproblem analysis for convex, concave , and concave-convex cable
roofs shown in Figs. [l-al , [1-bl and 11}, respectively for both types are
taken into considerations {1,2,31- T.umped or consistent mass was considered .
Three cases of loads are considered as static loads as :
Case A : uniformly distributed dead load of 0.3 KN/m' .
Case B : A combination of case A with uniformly live load on full span with
intensity of 1.1 KN/m' .

Case C . A combination of case A with uniformly live load on half span with
intensity of 1.1 KN/m' .

5-2 Natural Frequencies and Model Shapes .

First the influences of many factors on eigenvalues for all three mentioned
types of cable roofs are observed . These factors were summarized as, the initial
tension in cables , spacing between vertical ties , both sag and rise to span ratios
. span and loads . To carry out the influence of any factor on the eigenvalues, it
is considered that the other factors are kept constant as the initial tensions of
10% of breaking loads, spacing between vertical ties of 3m , and both sag and
rise to span ratios of 5% . The results given in Figs. [ 3 to 11 lean be
summacized as :

1) An inerease of initial tensions in cables produces a slight increase
for low frequencies and observable increase for high frequencres,
Figs. (3,4,51.

2) In case of increasing the spacing between vertical ties , Fig. (61 had
remote changes in the frequeneies up to 6 m , and then the
frequencies decreases slightly .

3) In view of Figs. [ 8 to 101 , an increase of span producesa
decrease of natural frequencies .

4) With rises of loads , the natural frequencies decrease Fig. [111.

Also , with reference to the results given in Table [3}, it noticed that the
effect ol using consistent mass matrix instead lumped mass matrix gave a remote
changes in low frequencies and these changes increase in the higher frequencies
. Also, using diagonal clements (type B) causes an incrcase of natural
frequencies .

Finally . the natural frequencies for all three mentioned types of roofs having a
spans of 30m , 60m , and 90m (both cases A and B) with all cases of
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gravitational loading are given in Figs. {12 to 201 . Also, the first few modal
shapes corresponding to case of gravitational loading A (type A) for all types of
cable roofs are shown in Figs. (211023 ],

6- Conclusions :
The general conclusions can be summanzed as :

1- The natural frequencies of convex, concave , and concave-convex cable
roofs vary with span , gravitational loading and initial tepsile forces in
cables , as well as with the spacing between vertical ties and both sag
and rise to span ratios .

These vanations are ;

a) The natural frequencies of cable roofs increase with mcreasing cable
pretensions and decrease with increasing spans , gravitational loading ,
and both sag and rise to span ratios .

by An increasing of spacing between vertical ties produces a remote
deercase of natural frequencics up to spacing of 6m and a slight
decrease of spacing greater than 6m .

¢) Using diagonal elements (roofs type B) produces an increase of natural
frequencies .

d) Case of dead load only (case of loading A) gave the higher values of
natural frequencies in companison with other cases .

e) The companson of the natural frequencies in complete similar cases for
all types of cable roofs shows that the smallest in convex roof but they
are the biggest in concave~convex roofs .

f) Using a lumped mass matrix instead the consistent mass matnx |
remote changes in low frequencies is observed , whereas with high
frequencies these changes are considerably noticeable .

2- In application of structural dynamics as only the first few lower
frequencies are of inlerest , the lumped mass malrices could be
significantly used with advantage in vibration problem . These lumped
matrices give computational advantages because of they are diagonal

3) The reduction of unwanted or secondary degrees of freedom is usuaily
accomplished in practice by the static condensation method . This
method introduces errors when applied to the solution . These errors are
very small in low frequeneies . So that , this method is applicable for use
in eable roofs .

4) The dynemic and modified dynamic condensations methods are valid to
use in structures having a small nnmbers of degrees of freedoms and
need a more carefuiness for choosing the unwanted degrees of fresdom
to be condenscd in large structures , especially in cable roofs |
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Tabie 1. Natural frequencies (cps) for the frame shown in Fig. [2-al,
No Methods of
Coudensation Condensation
Mode Static ~ Dynamic Modified dynamic
numbers | Frequency { Freq | "herror | Freq | %error Freq. [ %error
1 1.11 1125 | 1.35% LI1 0% 1.11 0%
2 2449 2,499 | 3.73% | 2,409 D% 2.41 0.04%
3 3.649 3.890 | 6.85% | 3.649 0% 3.633 0.1%

Table (2) : Cables Properties for Cable Roofs .

span Type ll)inmuter, Area, | Breaking | Weight [ Modules,E

m e cm2 | load ,(KNY | N/m' KN/mm
30m BS5896 1.8 2.23 380 17.17 150
60m spiral 351 4878 910 54.8 169.7

[ 90m | locked [ 4% 1S3 | 20003 | i25.7 158.4
Table [3] : Some Results of Nutural Frequencics for Cable Roofs .
frequency | Type of r Convex Riof Concave Roof Coneave-Conves Bgal
number Masy Ty A Tvne 1t Type A Type B Tipe A Type 3
P | e (A) 1] (A) ) Ay (8) A {B) {A) (B) A} 1H]
1 Limped | 045 | 055 | .52 | 0.65 [ 048 | 56 | 061 | 0674 | s | 056 1 557 .64
Cowmem ) 945 | 085 T o5y | 06 | 048 | 656 | 53 | 075 | 2.4¢ 067 | a5z Ve
2 i 02 ) Li4 | ver | t35 | o8 [ il | toe | 154 ] 0s0 | 13g | L19 1.55
[ 28 LAz [ ros | ta4 | o2 | i3d | Tow | 1ar | wos | tsr |1z 1.59
J T I, 1.4 16 | 14 [ m [ 119 1.4 L5 ) 18 | 123 | tar | 127 | 1
C LOd ) 123 | 14p ;| ot73 | 122 1 144 | 057 ] 1oL ] 18 | L | 129 Lo
4 i 118 [ 145 | ta8 L 078 | 127 ] s | des | 204 | 130 | 187 | 1er T oo
[ 1.2 164 1 15 | re7 | 137 | LA 18 | 235 | 135 | 18y | L35 | 282
5 L 121 153 1 ue6 J 222 | 4sy 17169 ) 201 ) 255 | ta4n | zes | 1sr | 249
C 1.3 Ley | 212 | 267 | 163 | 186 | 220 | 388 | 157 | 130 | 31 3104 |
10 1, 198 L 233 | 269 | «86 | 243 ] 293 | 30 | 520 | 254 | Zov | 158 £145
3 259 | 326 | 432 | 593 T 260 | 365 | 298 | 407 | 269 1 ten 148 [ #62
is I 100 4 38 b ule f uTs | 365 1 438 | 1308 | 1908 | 280 | 439 |1l 1441
& 3.8 o0 fua2al vsge | os9s | 628 | vam | 155 asa | 507 | 12as 15.93
20 1. 842 | 981 § idas | 4462 | 1445 | 1445 | 1662 | 168 | 1641 | 165 1577 1828
4 243 3 993 | 184 | 1842 | 163) [ 1613 | 2064 [ 2095 | 175 | 1745 | 2000 23.21
15 [N LY | 1695 ) 2145 ¢ ¥ha | 2405 | 2677 | 2455 § 3387 | 1002 | 2485 | 117 30.99
C 19.46 [ 2239 [ 2297 | S022 | 7500 | vaa9 | 5a3s | 3648 | 2707 ] 287 T 5716 16.91
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Fig. (1-a) Convex Roaf - Type A Fig. {1-a) Convex Roof - Type B
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Fig (1-b) Concave Roof - Type B K 7 6000 ¥/1n
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Fig. {1-¢) Concave -Convex Roof - Type B Fig. (2=a) Analysed Frame

Fig. 2 b The multimass spring modeled for the frame .
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Fig. (2-¢) The tree body diagram for the analysed frame.
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