OVERCOMING THE HARMFUL EFFECTS OF NaCI AND CaCl₂ SALINITY ON SWEET PEPPER PLANT GROWTH BY USING CERTAIN VITAMINS, BIO-REGULATOR AND YEAST EXTRACT.

Arafa, A. A.; M. A. Khafagy ; A. M. Abo-El Kheer ; R. A. Fouda and M. F. El-Banna

Dept. Agric. Bot., Fac. of Agric., Mansoura Univ., Egypt

ABSTRACT

An experiment was conducted to study the influence of soaking the seeds of sweet pepper plant in selected chemicals used i.e. bio-regulator (salicylic acid), vitamins (ascorbic acid or α -tocopherol) or yeast extract on sweet pepper plant growth under non-saline or saline conditions.

Low salinity level (2000 mg/L) in most cases, increased significantly sweet pepper growth parameters (plant height, root length, shoot and root fresh as well as dry weights, number of leaves as well as leaf area) after 75 and 90 days from sowing. In the contrast, increasing salinity levels decreased growth parameters. Whereas, NaCl+CaCl₂ (1:1) were more effective followed by CaCl₂ and NaCl. Moreover, presoaking seeds, in vitamins at 50 or 100 mg/L or salicylic acid at 75 or 150 mg/L or yeast extract at 1000 or 2000 mg/L gave a positive effect on growth parameters. Furthermore, salicylic acid at 75 mg/L, ascorbic acid at 50 mg/L or α -tocopherol at 100 mg/L were more effective in this respect.

INTRODUCTION

Sweet pepper (*Capsicum annuum* L.) is among the most important crops for the world human nutrition and its fruits have a good nutritional value in respect to antioxidant compounds, such as vitamin C and carotenoids (Navarro *et al.*, 2006).

It is a moderately-sensitive to salt stress (Lycoskoufis *et al.*, 2005). It cultivated under open field and greenhouses conditions. In Egypt cultivated area is around 71428.57 Feddan in 2008, yielded 475000 tones (FAO, 2008)*¹. In addition, productions throughout the world are around over 24 million tons every year (Casado-Vela *et al.*, 2007). Soil salinity is one of the major environmental stresses affecting over 20% of the world's irrigated land (Etehadnia, 2009) and 2.1% of the dry-land agriculture existing on the globe (Khosravinejad *et al.*, 2009) and extent throughout the world is increasing regularly (Schwabe *et al.*, 2006). It has now become a very serious problem for crop production (Munns and Tester, 2008), particularly in arid and semi-arid regions. However, the intensity of salinity stress varies from place to place. Irrigated land produces one-third of the world's food approximately

** FAO: Food and Agriculture Organization of the united nation, Statistical agricultural database sector. www.http:// faostat.fao.org/site/567/

(Munns, 2002) so its salinization, often due to poor irrigation practices, is particularly critical. Dry land salinity is also an important, and increasing, problem in some areas of the world (Tester and Davenport, 2003).

Therefore, the present investigation was performed to study the effect of different sources of salinity (NaCl, CaCl₂ and their combination 1:1) on sweet pepper growth. Moreover, it was intended to investigate effects of pre-soaking seeds in some materials such as vitamins (ascorbic acid and α -tocopherol) and bio-regulator (salicylic acid) and Yeast extract to alleviate the harmful effects of such salinity types.

MATEREIALS AND METHODS

The experiment was carried out in the glasshouse of the Agricultural Botany Dept., Fac. of Agriculture, Mansoura Univ. during the growing season of 2008, to study the response of plant growth of sweet pepper to different sources of salinity i.e. NaCl, CaCl₂ and their combination (1:1 w/w); and how to minimize its harmful effects through pre-soaking seeds in vitamins (Ascorbic acid or α -tocopherol) or bio-regulator (Salicylic acid) or Yeast extract.

Plant materials

The seeds of sweet pepper (*Capsicum annuum* L. cv. Orlando), a hybrid 'California Wonder' used in this investigation were secured from the Gohara Co. Cairo, Egypt.

Chemicals:-

- Vitamins, ascorbic acid Vit. C (AsA) and α-tocopherol Vit. E (α-toco.) were supplied by Sigma Chemicals Co., USA and used at the concentration of 50 or 100 mg/L each.
- Bio-regulator, salicylic acid (SA) (2-hydroxybenzoic acid) was obtained from Sigma Chemicals, Co., USA. and initially dissolved in 100 μL dimethyl sulfoxide and used at the concentrations of 75 and 150 mg/L,
- 3. Yeast extract, active dry yeast (*Saccharomyces cervisiae*) was applied at the concentration of 1000 or 2000 mg/L.
- 4. Salts:

4.1. Sodium Chloride (NaCl) from EL-Gomhoria Co., Egypt and was used at the concentrations of 2000 and 4000 mg/L.

4.2. Calcium Chloride (CaCl2) from EL-Gomhoria Co., Egypt and was used at the concentrations of 2000 and 4000 mg/L.

4.3. Their combination, NaCI: CaCl2 1:1 (w/w) was used at the concentrations of 2000 and 4000 mg/L.

Nutrient		N.S.+	NaCl	N.S.+	CaCl2	N.S	.+ {NaCl+0	CaCl2} (1:1) w/w					
solution	NS	2000	4000	2000	4000	2000(NaC	CI+CaCI2)	4000 (NaCI+CaCl2)					
(N.S.)	N.S.	N.S. 2000		2000	4000	1000	1000	2000					
mg/L		Naci	Naci			NaCl	CaCl2	NaCl	2000 CaCi2				
Mol (M)	0 (Control)	3.4×10-2	6.9×10-2	2.0×10-2	3.6×10-2	1.7×10-2	0.9×10-2	3.4×10-2	2.0×10-2				
Ec dSm-1	2.00	5.42	8.42	4.59	7.60	5.08		8.08					
рН	5.50	5.77 5		5.80 5.19		5.4	45	5	.34				

Table (1): The Molarity (Mol), Electrical Conductivity (E.C.) and pH values for different nutrient solutions.

Table (2): Weights (g) of pure substances to be dissolved in 1000 liters of water to give the theoretically ideal concentrations (Cooper, 1979).

Substance	Formula	Weight
Potassium dihydrogen Phosphate	KH ₂ PO ₄	263
Potassium Nitrate	KNO₃	583
Calcium Nitrate	Ca(NO ₃) ₂ . 4H2O	1003
Magnesium Sulphate	MgSO ₄ . 7H ₂ O	513
EDTA Iron	CH ₂ .N(CH ₂ .COO) ₂] ₂ Fe Na	79.0
Manganous Sulphate	MnSO ₄ .H ₂ O	6.10
Boric Acid	H ₃ BO ₃	1.70
Copper Sulphate	CuSO ₄ .5H ₂ O	0.39
Ammonium Molybdate	(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O	0.37
Zinc Sulphate	ZnSO4.7H2O	0.44

After soaking, the sterilized seeds (25 seeds/dish) were placed in glass Petri dishes (11 cm) with a double layer of Whatman No. 1 filter paper. The dishes were left in an incubator in the dark for seed germination at $25 \pm 2^{\circ}$ C and 90% relative humidity, and then dishes were covered with aluminum foils for darkness. In order to avoid water losses, 5 ml of the nutrient solution were added to Petri dishes, every 5 days. Thiram was added to the solution at a concentration of 2% (w/v) to control the fungi infection.

	Constituents	Value (%)							
Protein		4	7						
Carbohydrates		3	3						
Minerals		8	8						
Nucleic acids		8	3						
Lipids		4	1						
	Approximate com	position of vitamins							
Vitamines		Value	(µg/g)						
Cholin		40	00						
Niacin		300-	-500						
Thiamine (B ₁)		60-	100						
Pantorhenate (E	B ₅)	7	0						
Riboflavin (B ₂)		35-	-50						
Pyridoxine HCL	(B ₆)	2	8						
Folic acid		5-	5-13						
Biotin		1.	.3						
Vit. B ₁₂		0.0	001						
12	Approximate com	position of minerals	-						
Minerals	Value (mg/g)	Minerals	Value (µg/g)						
К	21	Cu	8.00						
Р	13.50	Ni	3.00						
S	3.90	Sn	3.00						
Mg	1.65	Cr	2.20						
Са	0.75	Mo 0.40							
Zn	0.17	Se	0.10						
Na	0.12	Li	0.17						
Si	0.03	Va	0.04						
Fe	0.02	Mn	0.02						

 Table (3): Composition of yeast extract (according to, Nagodawithana, 1991)

The following experiment was carried out in the glasshouse of the Agric. Bot. Dept., Fac. of Agric., Mansoura Univ. during the spring–summer period of 2008 in a glasshouse under conditions of ambient light during winter, spring and early summer, with 10/14 light/dark period at 800–1100 μ mol m^{-2s-1} PPFD, a day/night average temperature cycle of 26/15 °C and 65±5% relative humidity.

The focus of the current experiment was to provide fundamental biological understanding and knowledge on sweet pepper plants growing in nutrient film technique (NFT), under different sources of salinity NaCl, CaCl₂ and their combinations 1:1 (w/w); and how to minimizing the harmful effects through pre-soaking seeds in vitamins (Ascorbic acid, α -tocopherol) or bioregulator (Salicylic acid), or Yeast extract. The seeds of sweet pepper were sown on Jan, 13, 2008. A homogenous sweet pepper seeds were placed in 100 ml beakers and 20 ml of 1% sodium hypochlorite was added for sterilization. These were left in the solution for 5 min followed by washing under running tap water and ionized water twice. Then divided into 9 sets.

The first set was soaked (24hours) in distilled water as control and the remaining sets (8) were separately soaked for 24 h in aqueous solution of AsA or α -toco. at (50 or 100 mg/L) each or SA at (75 or 150 mg/L) or Yeast extract at (1000 or 2000 mg/L). Then germinated in seedling trays (209 eye) containing peat moss and perlite (1:1) as a rooting medium moistured by nutrient cooper solution (Cooper, 1979). Trays containing the seeds were placed in a glasshouse at 28 ±2^oC to germinate.

The experimental layout consisted of 7 automatic hydroponic units (groups) (experimental plots). Each hydroponic unit comprised of two plastic channels (4 m long * 10 cm in diameter) placed on one side of the holder (4m length * 1.5 m height). Each channel had 40 pores (6 cm diameter). Every unit was provided by an electric pump representing seven groups (Table, 1) nutrient solution (2.0 dSm^{-1} as a control), 2000 mg/L NaCl (5.42 dSm^{-1}), 4000 mg/L NaCl (8.42 dSm^{-1}), 2000 mg/L CaCl₂ (4.59 dSm^{-1}), 4000 mg/L CaCl₂ (7.60 dSm^{-1}), 2000 mg/L NaCl+CaCl₂ (1:1) (5.08 dSm^{-1}) and 4000 mg/L NaCl+CaCl₂ (1:1) (8.08 dSm^{-1}).

The seedlings were transplanted to the experimental installation on Feb, 26, 2008 (after 45 days from pre-soaking) at the stage of four/five true leaves. Two uniform seedlings were transplanted to 6 cm perforated pots (reticulated) containing peat moss and perlite (1:1) as a rooting medium.

Every two channels was divided into 9 sets, the first set was soaked in distilled water (control), AsA, α -toco. at (50 or 100 mg/L) each, SA at (75 or 170 mg/L), and Yeast extract at (1000 or 2000 mg/L). Each set contained (8 replicates) 16 seedlings (two seedling/pot) spaced 10 cm representing a Nutrient Film Technique (NFT).

To keep the concentrations of sodium chloride and mineral nutrients constant, the solution was changed every 7 to 10 days and the volume of the solution was maintained by adding distilled water as required after measuring the electrical conductivity by digital conductivity meter Lutron CD-4301. A nutrient solution was pumped into the channels at a flow rate of one liter per minute from a reservoir containing 10 liters.

Sampling dates:

Two samples were taken at 30 and 45 days after transplanting (75 and 90 days from sowing) to study the following measurements. Plant height (cm).

Root length (cm).

Roots and shoots (leaves and stem) were separated and repeatedly rinsed with ionized water and their fresh and dry weights (g/plant) were immediately determined.

Number of leaves per plant.

leaf area (cm2/plant) was determined using the following formula according to (Koller, 1972)

Leaf area/plant = Leaves dry weight (g) * disk area Disk dry weight (g) · No. of leaves/plants

Statistical analysis:

The obtained data were subjected to statistical analysis of variance according to Gomez and Gomez (1984).

RESULTS AND DISCUSSION

Data presented in tables (4-11) showed that low salinity level (2000 mg/L) of all salinity types, in most cases, increased significantly sweet pepper growth parameters in the two sampling dates. Furthermore, NaCl+CaCl₂ (1:1) was more effective in this respect followed by CaCl₂ and NaCl at 2000 mg/L. In the contrast, growth parameters were decreased gradually with increasing salinity levels from 2000 to 4000 mg/L and the great reduction occurred under NaCl followed by NaCl+CaCl₂ (1:1) and CaCl₂ at 4000 mg/L each.

The inhibiting effect of salinity on growth parameters in this investigation are in agreement with El-Banna, 2006; Houimli *et al.*, 2008 and khafagy *et al.*, 2009 who concluded that high salinity stress decreased plant growth in *Capsicum annuum* L.

Regarding the effect of selected chemicals on plant growth, data in the same tables pointed out that pre-soaking pepper seeds in such chemicals, in most cases, gave a positive effect on growth parameters as compared with untreated plant (control). In addition, pre-soaked sweet pepper seeds in salicylic acid at 75 mg/L, ascorbic acid at 50 mg/L or α -tocopherol at 100 mg/L were more effective in this respect as compared to remaining treatments including control.

As for the interactions between salinity and selected chemicals used, data in the same tables showed that growth parameters were increased significantly in both samples as compared to untreated plants. In addition, means of (A*B) indicated that growth parameters were increased significantly under low level of salinity 2000 mg/L, the maximum enhanced value was recorded under NaCl+CaCl₂ (1:1) followed by CaCl₂ at 2000 mg/L each. Meanwhile, under high salinity level application of these chemicals, in most cases, counteracted the harmful effect of salinity on growth especially salicylic acid at 75 mg/L and ascorbic acid at 50 mg/L as compared to untreated plants under such salinity.

The stimulating effect of low salinity level of NaCl (2000 mg/L) on plant growth may be resulted from the beneficial effect of low concentration of chloride on many physiological processes as photosynthesis, enzymes activity as well as osmoregulators, which allow cell enlargement and plant growth at low water availability caused by the presence of ions especially Na⁺ and Cl⁻ (Khan et al., 1997). The stimulation effect of low salinity level of CaCl₂ at 2000 mg/L on pepper plant growth may be attributed to increase calcium uptake Ca2+ that play a critical role in improving plant growth under saline conditions and/or may be due to reducing permeability of Na⁺ through the plasma membrane and prevent loss of K⁺/Na⁺ ratio . Cramer, 1992 and/or defined as "free cytosplic calcium" participates in regulation of metabolism and growth of plants. Moreover, Ca²⁺ is taken up by plants passively and only by root tips constituent of the middle lamella of cell walls where it helps to bind adjacent cells together and strengthen overall construction (Marschner, **1995**) and influences membrane structure and function, stabilizing membranes and influencing permeability by birding phosphate and carboxylate groups of membrane phospholipids and protein (Davies and

Monk-Talbot, 1990) and Ca²⁺ serves as an important second messenger in the perception and transduction of environmental and stress signals (**Roos, 2000**).

Furthermore, Ca²⁺ ameliorates the long term negative effects of NaCl on plant growth and protects against the adverse effect of salinity (**Cramer et al., 1989**).

Table	(4): Effect of pre-soaking seeds in SA, AsA, α -toco. or Yeast
	extract on plant height (cm) of sweet pepper grown under non-
	saline and saline conditions at 75 and 90 days from sowing
	using NFT.

Sa	linitv									N.S.+		
(A)		N	.S.+ Na	aCl	N.5	S.+ Ca	CI2	(NaCl	+CaCl2	2) (1:1)	
Treat	ment									w/w	, (,	Mean
(C) m	ng/L		Con	c. (B)	Mean	Cond	c. (B)	Mean	Con	c. (B)	Mean	(C)
Ĺ	-	N.S.	2000	4000	(A*C)	2000	4000	(A*C)	2000	4000	(A*C)	
					75 day	s from	sowi	ng			., /	
Water	r	35.93	37.00	27.93	33.62	38.07	33.87	35.96	39.33	31.83	35.70	35.09
SA 75	5	37.1 <u></u> 3	38.43	31.83	35.80	39.17	35.97	37.42	41.67	34.33	37.71	36.98
SA 15	50	36.73	37.93	31.23	35.30	38.57	34.67	36.66	39.87	32.97	36.52	36.16
AsA 5	50	36.77	38.33	31.83	35.64	39.17	35.17	37.03	41.57	33.87	37.40	36.69
AsA 1	00	36.70	37.67	31.47	35.28	38.83	34.93	36.82	40.07	33.07	36.61	36.24
α-toco	o 50	36.70	37.83	31.33	35.29	38.67	34.77	36.71	39.97	32.97	36.54	36.18
α-toco	o 100	36.8 <u></u> 3	37.97	31.67	35.49	39.17	34.93	36.98	40.23	33.33	36.80	36.42
Yeast	1000	36.23	37.57	28.17	33.99	38.77	34.17	36.39	39.63	31.83	35.90	35.43
Yeast	2000	36.33	37.77	29.83	34.64	38.37	34.33	36.34	39.63	32.23	36.07	35.69
ц	A			35.01			36.70			36.58		
lea	В	36.60	38.93	32.76								
≥	A*B		37.83	30.59		38.75	34.76		40.22	32.94		
											٨*١	
	at 0 05											50,
LSD a	at 0.05	A; 0.0	09 B;	0.09	C; 0.15	A*B;	0.15 A	A*C; 0.:	25 B*	C; 0.25		.45
LSD a	at 0.05	A; 0.0	09 B;	0.09	C; 0.15 90 day	A*B; s from	0.15 sowi	A*C; 0.: ng	25 B*	C; 0.25		.45
LSD a Water	at 0.05	A; 0. 56.27	58.50	0.09	5; 0.15 90 day 49.76	A*B; s from 60.50	0.15 sowi 47.73	A*C; 0.2 ng 54.83	25 B*	C; 0.25 44.77	54.93	.45 53.17
LSD a Water SA 75	nt 0.05	A; 0. 56.27 58.33	58.50 60.33	0.09 34.50 44.77	54 .48	A*B; s from 60.50 63.17	0.15 4 sowi 47.73 55.73	*C; 0. ng 54.83 59.08	25 B* 63.77 72.73	C; 0.25 44.77 48.27	54.93 59.78	53.17 57.78
LSD a Water SA 75 SA 15	at 0.05 r 5 50	A; 0.0 56.27 58.33 57.33	58.50 60.33 59.27	0.09 34.50 44.77 41.17	5 ; 0.15 90 day 49.76 54.48 52.59	A*B; s from 60.50 63.17 62.23	0.15 sowi 47.73 55.73 54.27	*C; 0. ng 54.83 59.08 57.94	63.77 72.73 67.17	C; 0.25 44.77 48.27 46.70	54.93 59.78 57.07	53.17 57.78 55.87
LSD a Water SA 75 SA 15 AsA 5	nt 0.05 n 5 50 50	A; 0.0 56.27 58.33 57.33 58.27	58.50 60.33 59.27 59.77	0.09 34.50 44.77 41.17 44.73	54.48 54.25 54.26	A*B; s from 60.50 63.17 62.23 63.17	0.15 A sowi 47.73 55.73 54.27 55.50	A*C; 0.2 ng 54.83 59.08 57.94 58.98	63.77 72.73 67.17 70.03	C; 0.25 44.77 48.27 46.70 47.77	54.93 59.78 57.07 58.69	53.17 57.78 55.87 57.31
LSD a Water SA 75 SA 15 AsA 5 AsA 1	at 0.05	A ; 0. (56.27 58.33 57.33 58.27 58.17	58.50 60.33 59.27 59.77 59.73	0.09 (34.50 44.77 41.17 44.73 43.23	54.48 54.26 54.26 53.71	A*B; s from 60.50 63.17 62.23 63.17 62.27	0.15 4 sowi 47.73 55.73 54.27 55.50 54.77	*C; 0. 5 4.83 59.08 57.94 58.98 58.40	63.77 72.73 67.17 70.03 68.23	C; 0.25 44.77 48.27 46.70 47.77 46.73	54.93 59.78 57.07 58.69 57.71	53.17 57.78 55.87 57.31 56.61
LSD a Water SA 75 SA 15 AsA 5 AsA 1 α-toco	at 0.05	A ; 0. (56.27 58.33 57.33 58.27 58.17 57.77	58.50 60.33 59.27 59.77 59.73 59.50	0.09 34.50 44.77 41.17 44.73 43.23 42.57	90 day 49.76 54.48 52.59 54.26 53.71 53.28	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27	0.15 4 sowii 47.73 55.73 54.27 55.50 54.77 51.77	*C; 0. 5 4.83 59.08 57.94 58.98 58.40 57.27	63.77 72.73 67.17 70.03 68.23 67.17	C; 0.25 44.77 48.27 46.70 47.77 46.73 46.73	54.93 59.78 57.07 58.69 57.71 57.22	53.17 57.78 55.87 57.31 56.61 55.92
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc	at 0.05 5 5 5 5 5 5 5 5 5 5 5 5 5	A ; 0. (56.27 58.33 57.33 58.27 58.17 57.77 58.00	58.50 60.33 59.27 59.77 59.73 59.50 59.50	0.09 34.50 44.77 41.17 44.73 43.23 42.57 43.77	90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53	0.15 5000 47.73 55.73 54.27 55.50 54.77 51.77 55.17	*C; 0. ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57	25 B * 63.77 72.73 67.17 70.03 68.23 67.17 68.50	44.77 48.27 46.70 47.77 46.73 46.73 47.17	54.93 59.78 57.07 58.69 57.71 57.22 57.89	53.17 57.78 55.87 57.31 56.61 55.92 56.76
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast	at 0.05 r 50 50 50 50 50 50 50 50 50 50	A; 0. 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70	58.50 60.33 59.27 59.77 59.73 59.50 59.73 59.73 59.73	0.09 0 34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27	90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.23 62.53 61.17	0.15 A sowii 47.73 55.73 54.27 55.50 54.77 51.77 55.17 49.00	A*C; 0 ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17	44.77 48.27 46.70 47.77 46.73 46.73 47.17 39.27	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38	53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc Yeast Yeast	at 0.05 5 5 5 5 5 5 5 5 5 5 5 5 5	A ; 0. (56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23	58.50 60.33 59.27 59.77 59.73 59.50 59.73 59.73 58.33 58.37	0.09 0 34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53 61.17 61.47	0.15 A sowia 47.73 55.73 54.27 55.50 54.77 51.77 55.17 49.00 52.00	A*C; 0.: ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62 56.90	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 64.67	44.77 48.27 46.70 47.77 46.73 46.73 47.17 39.27 45.17	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast Yeast	at 0.05	A; 0.0 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 56.70 57.23	58.50 60.33 59.27 59.77 59.73 59.50 59.73 59.50 59.73 58.33 58.77	0.09 0 34.50 44.77 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 52.58	53.28 50.10 51.26 51.2	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53 61.17 61.47	0.15 4 sowii 47.73 55.73 54.27 55.50 54.77 51.77 55.17 49.00 52.00 57.51	A*C; 0 ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62 56.90	63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67	44.77 48.27 46.70 47.77 46.73 46.73 46.73 45.17 39.27 45.17 56.93	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast Yeast	at 0.05 5 5 60 00 5 50 5 50 5 50 5 50 5 50	A; 0.0 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23 57.56	58.50 60.33 59.27 59.77 59.73 59.50 59.73 59.50 59.73 58.33 58.33 58.33 58.33 58.33	0.09 0 34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 46.53 46.53	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53 61.17 61.47	0.15 4 sowii 47.73 55.73 54.27 55.50 54.77 51.77 55.17 49.00 52.00 57.51	A*C; 0.1 ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62 56.90	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 64.67	44.77 48.27 46.70 47.77 46.73 46.73 45.17 56.93	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	45 53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast Yeast Yeast	at 0.05 50 50 50 50 50 50 50 50 50 50 50 50 5	A; 0.0 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23 57.56	58.50 60.33 59.27 59.77 59.73 59.50 59.73 59.50 59.73 58.33 58.77 62.93 59.33	0.09 0 34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 46.53 40.86	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53 61.17 61.47 61.47	0.15 A sowin 47.73 55.73 54.27 55.50 54.27 51.77 51.77 55.17 49.00 52.00 57.51	A*C; 0.1 ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62 56.90	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 64.67	44.77 48.27 46.70 47.77 46.73 46.73 45.17 56.93 45.84	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	45 53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61
USD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast Yeast LSD a	at 0.05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A; 0.1 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23 57.56 57.56 A; 0.2	58.50 60.33 59.27 59.77 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.33 21 8;	0.09 0 34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 46.53 40.86 0.21 0	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26 C; 0.36	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.23 61.17 61.47 61.47 62.09 A*B;	0.15 A sowin 47.73 55.73 54.27 55.50 54.27 51.77 55.17 52.00 57.51 57.51 57.51 52.88 0.36	A*C; 0.: ng 54.83 59.08 57.94 58.98 58.40 57.27 58.57 55.62 56.90	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 64.67 67.38 8* 67.38 8*	C; 0.25 44.77 48.27 46.70 47.77 46.73 46.73 46.73 46.73 46.73 45.77 56.93 45.84 C; 0.62	54.93 59.78 57.07 57.07 57.22 57.89 53.38 55.69	45 53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61 52.03 54.61
LSD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc α-tocc Yeast Yeast LSD a	at 0.05 50 50 50 50 50 50 50 50 50 50 50 50 5	A; 0.1 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23 57.56 A; 0.2 trient \$	58.50 60.33 59.27 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.33 59.33 21 83 50 50	0.09 (34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 46.53 40.86 0.21 (n (Con	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26 C: 0.36 trol)	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.27 62.53 61.17 61.47 61.47 62.09 A*B;	0.15 A sowin 47.73 55.73 54.27 55.50 54.77 55.17 49.00 52.00 57.51 52.88 0.36 A	A*C; 0 ng 54.83 59.08 57.94 58.90 57.94 58.40 57.27 55.62 56.90 A*C; 0.6 SA =	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 64.67 64.67 64.67 82 82 84 82 84 82 84 84 84 84 84 85 85 85 85 85 85 85 85 85 85	C; 0.25 44.77 48.27 46.70 47.77 46.73 46.73 46.73 47.17 39.27 45.17 56.93 45.84 C; 0.62 lic acid	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	45 53.17 57.78 55.87 55.87 57.31 56.61 55.92 56.76 53.03 54.61
LSD a Water SA 75 SA 15 AsA 5 AsA 1 α-tocc Yeast Yeast LSD a	at 0.05 5 5 5 5 5 5 5 5 5 5 5 5 5	A; 0.1 56.27 58.33 57.33 58.27 58.17 57.77 58.00 56.70 57.23 57.56 A; 0.2 trient S A = As	58.50 60.33 59.27 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.73 59.33 59.33 21 B Solutic corbic	0.09 (34.50 44.77 41.17 44.73 43.23 42.57 43.77 35.27 37.77 52.58 46.53 40.86 0.21 (n (Con acid	5: 0.15 90 day 49.76 54.48 52.59 54.26 53.71 53.28 53.83 50.10 51.26 C; 0.36 trol)	A*B; s from 60.50 63.17 62.23 63.17 62.27 62.53 61.17 61.47 61.47 62.09 A*B;	0.15 A sowin 47.73 55.73 54.27 55.50 54.77 55.17 49.00 52.00 57.51 52.88 0.36	A*C; 0 ng 54.83 59.08 57.94 58.98 58.40 57.27 55.62 56.90 A*C; 0.6 SA = α-toco	25 B* 63.77 72.73 67.17 70.03 68.23 67.17 68.50 64.17 64.67 - 67.38 - 82 B* Salicy - - -	C; 0.25 44.77 48.27 46.70 47.77 46.73 46.73 47.17 39.27 45.17 56.93 45.84 C; 0.62 lic acid copher	54.93 59.78 57.07 58.69 57.71 57.22 57.89 53.38 55.69	45 53.17 57.78 55.87 57.31 56.61 55.92 56.76 53.03 54.61

ļ

Table (5) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on root length (cm) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

Colinit	- 301	1	, u	Jing	,				N.S.+			
Salinity					- 01				/N	N.5.+	<u></u>	
(A) Traatmast		"	v.S.	+ Na	101	N.8	5.+ Ca		(Na		UI ₂)	
(C) ma/	N.S.	6.		(D)	1.4	Con		1.4		1:1) W/	W	Mean (C)
(C) mg/L			nc.	(B)	Mean	Cond	C. (B)	iviean	Con	C. (B)	Mean	
		200	04	000	(A°C)	2000	4000	(A°C)	2000	4000	(A°C)	
10/-1	00 7	04	- 1	7.0	/50	lays fi	om s	owing	00.0	10.0	04.0	00.0
vvater	20.7	21.	5 1	1.6	20.0	22.5	20.0	21.1	23.8	19.2	21.3	20.8
SA 75	21.5	22.	5 1	9.3	21.1	23.7	20.5	21.9	27.3	19.9	22.9	22.0
SA 150	24.4	21.	8 1	8.9	21.7	23.0	20.3	22.6	25.5	19.7	23.2	22.5
AsA 50	21.4	21.	8 1	9.2	20.8	23.5	20.5	21.8	27.1	19.8	22.8	21.8
AsA 100	21.2	21.	8 1	9.2	20.8	23.5	20.3	21.7	26.3	19.8	22.5	21.6
a-toco 50	21.2	21.	8 1	9.0	20.7	23.5	20.3	21.7	25.8	19.7	22.3	21.6
α-toco 100	21.5	21.	8 1	9.2	20.9	23.5	20.5	21.9	27.0	19.8	22.8	21.8
Yeast 1000	20.7	21.	7 1	8.3	20.3	22.8	20.0	21.2	23.9	19.3	21.3	20.9
Yeast 2000	20.7	21.	8 1	8.8	20.5	22.8	20.3	21.3	24.8	19.5	21.7	21.2
А			2	20.7			21.7			22.3		
ы В	21.5	39.	3 3	35.5						-		
∯ A*B	1	38.	2 3	84.1		39.1	36.4		40.8	36.0		
LSD at									· · ·		1	
0.05	A; 0.0)7 E	3; 0.	07 0	C; 0.14	A*B;	0.14	A*C; 0.2	23 B*	C; 0.23	A *	B*C; 0.41
					90 d	lays fr	om s	owing				
Water	36.63	37.1	73	0.00	34.60	37.27	35.73	36.54	38.00	35.27	36.63	35.93
SA 75	37.83	38.7	73 3	5.23	37.27	39.73	36.77	38.11	42.27	36.50	38.87	38.08
SA 150	37.37	38.2	27 34	4.77	36.80	39.23	36.50	37.70	40.50	36.33	38.07	37.52
AsA 50	37.77	38.4	13 3	5.07	37.09	39.67	36.77	38.07	42.33	36.27	38.79	37.98
AsA 100	37.53	38.4	10 34	4.77	36.90	39.33	36.77	37.88	41.27	36.23	38.34	37.71
α-toco 50	37.47	38.2	27 34	4.77	36.83	39.27	36.50	37.74	41.23	36.23	38.31	37.63
α-toco 100	37.57	38.5	50 34	4.97	37.01	39.33	36.77	37.89	41.50	36.23	38.43	37.78
Yeast 1000	36.93	37.7	73	2.27	35.66	38.73	35.77	37.14	39.67	35.50	37.37	36.72
Yeast 2000	37.07	38.0)734	4.60	36.58	39.00	36.27	37.44	40.33	35.77	37.72	37.25
Α			3	6.53			37.61			38.06	•	
Б В	37.35	39.3	343	5.50		1			1			
∯ A*B	1	38.1	83	4.05		39.06	36.43		40.79	36.04		
LSD at			-10		1		1		1			
0.05	A: 0.0)8 F	3: 0.	08 0	C: 0.14	A*B:	0.14	A*C: 0.3	23 B*	C: 0.23	A *	B*C: 0.42
N.S	5.= Nut	rient	Sol	utio	n (Cont	ontrol) SA = Salicylic acid					id	
	AsA	4 = A	sco	rbic	acid				α-too	co. = α-	tocoph	erol
	Voa	et = `	Yea	st ex	tract							

Table (6) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on root fresh weight (g) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

<u> </u>	301	ung	uəmiş	,	•			1			
Salinity (A) Treatment	N.S.	N.:	S.+ Na	aCI	N.S	6.+ Ca	ICI ₂	(Na (*	N.S.+ Cl+Ca I:1) w/	Cl₂) w	Mean (C)
(C) mg/L		Cond	c. (B)	Mean	Cond	c. (B)	Mean	Con	с. (В)	Mean	
		2000	4000	(A°C)	2000	4000	(A°C)	2000	4000	(A*C)	
Mater	0.00	0.04	0.00	/5 a	ays fr		wing	4.05	0.74	0.47	2.24
vvater	3.32	3.01	2.28	3.07	4.03	3.07	3.47	4.35	2.74	3.47	3.34
SA 75	3.01	3.90	2.75	3.42	4.34	3.20	3.74	5.42	3.02	4.02	3.72
SA 150	3.45	3.70	2.55	3.25	4.10	3.22	3.61	4.62	2.98	3.68	3.52
ASA 50	3.57	3.88	2.12	3.39	4.19	3.20	3.67	5.04	3.02	3.88	3.65
ASA 100	3.47	3.82	2.67	3.32	4.18	3.24	3.63	4.65	3.01	3.71	3.55
α-τοςο 50	3.47	3.77	2.59	3.28	4.16	3.23	3.62	4.62	3.00	3.70	3.53
	3.56	3.84	2.70	3.37	4.19	3.24	3.66	4.86	3.01	3.81	3.61
Yeast 1000	3.11	3.62	2.33	3.02	4.06	3.08	3.42	4.38	2.80	3.43	3.29
Yeast 2000	3.40	3.67	2.48	3.18	4.07	3.12	3.53	4.56	2.94	3.63	3.45
А			3.26			3.59			3.70		
B	3.44	4.21	2.90								
∯ A*B		3.76	2.56		4.15	3.19		4.72	2.95		
LSD at											
0.05	A; 0.0	6 B;	0.06	C; 0.11	A*B;	0.11	A*C; 0.1	I9 B*0	C; 0.19	A*E	3*C; 0.33
				90 da	ays fr	om so	wing				
Water	13.84	14.41	10.20	12.82	15.79	12.11	13.91	17.31	11.87	14.34	13.69
SA 75	14.64	15.58	12.11	14.11	17.07	13.75	15.15	20.16	13.06	15.96	15.07
SA 150	14.40	15.23	11.74	13.79	16.36	13.33	14.70	18.90	12.72	15.34	14.61
AsA 50	14.57	15.56	12.05	14.06	16.91	13.64	15.04	19.92	12.96	15.82	14.97
AsA 100	14.43	15.56	11.96	13.98	16.72	13.48	14.87	19.24	12.87	15.51	14.79
α-toco 50	14.43	15.27	11.85	13.85	16.64	13.36	14.81	18.83	12.77	15.34	14.67
α-toco 100	14.48	15.51	11.97	13.98	16.92	13.53	14.98	19.55	12.96	15.66	14.87
Yeast 1000	13.98	14.71	10.33	13.01	15.83	13.11	14.31	17.34	12.25	14.52	13.95
Yeast 2000	14.22	14.99	11.13	13.45	16.17	13.31	14.57	18.29	12.57	15.03	14.35
А			13.67			14.70			15.28		
B	14.33	16.84	12.48								
∯ A*B	1	15.20	11.48	l	16.49	13.29		18.84	12.67		
LSD at							A*C:				
0.05 A; 0.02 B; 0.02 C; 0.03 A*B; 0.03 0.05 B*C; 0.05 A*B*C; 0.09											
N.S.= Nutrient Solution (Control) SA = Salicylic acid											
AsA = Ascorbic acid α-toco. = α-tocopherol											erol
	Yeast	= Yeas	st extra	act							

Table (7) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on shoot fresh weight (g) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

							-		N.S.+ (NaCI+CaCl ₂)			
Sa	linity		N	.S.+ Na	CI	N	.S.+ Ca	Cl ₂	N.S.+	(NaCI+) (1:1) w/\	vaci ₂)	
() Trac	A) tmont		Cond	c. (B)	Mean	Cond	c. (B)	Mean	Con	c. (B)	Mean	Mean (C)
inea			2000	4000	(A*C)	2000	4000	(A*C)	2000	4000	(A*C)	、 /
(C) I	ny/L	N.S.			75 4						(·· ⊂)	
Wata	r	10 74	11 70	5 72	150	ays 11	0.17	10.04	14.07	0 00	11.07	10.47
	51 75	10.71	11.78	5.73	9.41	12.93	9.17	10.94	14.27	8.23	11.07	10.47
SA I	5	11.99	13.15	7.89	10.40	14.19	10.59	12.20	17.93	9.06	13.00	12.09
SA I	50	11.10	12.82	7.47	10.49	13.80	9.93	11.03	15.45	8.62	11.75	11.29
ASA	50	11.78	13.10	7.81	10.90	14.05	10.54	12.13	16.82	8.96	12.52	11.85
ASA	100	11.55	12.96	7.73	10.75	13.94	10.19	11.90	15.89	8.82	12.09	11.58
	0 50	11.50	12.89	7.64	10.68	13.91	10.04	11.82	15.73	8.81	12.02	11.51
α-τος	0 100	11.52	13.03	8.11	10.89	13.99	10.52	12.01	16.35	8.88	12.25	11.72
Yeas 1000	st)	10.76	12.04	6.25	9.69	13.18	9.34	11.10	14.41	8.31	11.16	10.65
Yeas 2000	st)	10.89	12.51	6.47	9.96	13.43	9.55	11.29	14.97	8.44	11.44	10.90
c	A			10.42			11.68			11.92		
ea	В	11.32	14.06	8.64								
Σ	A*B		12.70	7.24		13.72	9.99		15.76	8.68		
LSD	at											
0.05		A; 0.0	02 B; 0	0.002	; 0.003	A*B; 0	0.003	A*C; 0.0	1 B*	C; 0.01	A*	B*C; 0.01
					90 d	ays fi	rom s	owing	3			
Wate	er	29.07	33.60	10.40	24.36	37.91	22.95	29.98	45.62	15.98	30.22	28.18
SA 7	5	33.71	38.50	15.72	29.31	43.86	28.81	35.46	55.36	24.23	37.77	34.18
SA 1	50	30.88	36.12	14.51	27.17	41.81	27.11	33.27	50.33	20.78	34.00	31.48
AsA	50	32.81	38.39	15.67	28.95	43.61	28.66	35.02	52.50	23.78	36.36	33.45
AsA	100	31.76	37.20	14.91	27.96	42.30	27.74	33.93	51.46	22.47	35.23	32.37
α-too	:o 50	31.29	37.00	14.60	27.63	42.07	27.64	33.67	50.63	21.94	34.62	31.97
α-too	co 100	32.46	37.87	15.45	28.59	42.66	28.17	34.43	51.67	23.52	35.89	32.97
Yeas 1000	st)	29.20	34.30	12.11	25.20	39.39	24.44	31.01	47.93	16.34	31.16	29.12
Yeas 2000	st)	30.01	35.74	14.27	26.68	40.95	26.15	32.37	49.41	18.89	32.77	30.61
	А			27.32			33.24			34.22		
an	B	31.24	42.90	20.64								
Ae	A*B		36.52	14.18		41.62	26.85		50.55	20.88		
LSD	at											
0.05	-	A: 0 0)5 В [.]	0.05	C: 0.09	A*B:	0.09	A*C: 0.1	6 в*с	2: 0.016	A*	B*C: 0.28
N.S	.= Nutri	ent S	olutio	n (Con	trol)			SA = 5	Salicyli	c acid		,
AsA	= Asc	orbic	acid					α-toco	. = α-t	ocophe	erol	
Yea	st = Ye	ast ex	ctract									

Table (8) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on root dry weight (g) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

Salinity			<u></u>								
(A)		N.	S.+ Na	aCl	N.	S.+ Ca		(NaC	+CaCl	2) (1:1)	
Treatment							-	`	w/w	_, 、 ,	Niean
(C) mg/L		Cond	c. (B)	Mean	Cond	c. (B)	Mean	Con	c. (B)	Mean	(C)
	N.S.	2000	4000	(A*C)	2000	4000	(A*C)	2000	4000	(A*C)	
				75 day	ys froi	n sow	ing				
Water	0.25	0.27	0.18	0.23	0.30	0.24	0.26	0.34	0.22	0.27	0.26
SA 75	0.26	0.31	0.22	0.26	0.34	0.25	0.28	0.40	0.24	0.30	0.28
SA 150	0.25	0.29	0.25	0.26	0.32	0.24	0.27	0.36	0.23	0.28	0.27
AsA 50	0.26	0.31	0.22	0.26	0.34	0.25	0.28	0.37	0.24	0.29	0.28
AsA 100	0.26	0.29	0.22	0.26	0.33	0.24	0.28	0.37	0.23	0.29	0.27
α-toco 50	0.25	0.29	0.22	0.25	0.32	0.24	0.27	0.36	0.23	0.28	0.27
α-toco 100	0.26	0.29	0.22	0.26	0.33	0.24	0.28	0.37	0.23	0.29	0.27
Yeast 1000	0.25	0.28	0.18	0.24	0.31	0.24	0.27	0.35	0.22	0.27	0.26
Yeast 2000	0.25	0.29	0.20	0.25	0.32	0.24	0.27	0.35	0.23	0.28	0.26
A			0.25	-		0.27			0.28		
B	0.25	0.33	0.23		-			-	-		
_≝ A*B		0.29	0.21		0.32	0.24		0.36	0.23		
LSD at 0.05	A; 0.0	01 B;	0.01 (C; 0.02	A*B;	0.02	4*C; 0.0	3 B*0	C; 0.03	A*B*0	C; 0.05
				90 da	ys froi	n sow	ing				-
Water	2.40	2.66	1.67	2.24	2.79	2.18	2.45	3.38	2.08	2.62	2.44
SA 75	2.69	2.97	2.13	2.60	3.32	2.43	2.81	5.24	2.32	3.42	2.94
SA 150	2.60	2.85	1.99	2.48	3.05	2.39	2.68	3.62	2.18	2.80	2.65
AsA 50	2.64	2.89	2.04	2.52	3.26	2.42	2.77	4.64	2.29	3.19	2.83
AsA 100	2.60	2.86	2.03	2.50	3.18	2.40	2.73	4.04	2.23	2.96	2.73
α-toco 50	2.62	2.84	1.99	2.48	3.17	2.40	2.73	3.70	2.22	2.85	2.69
α-toco 100	2.63	2.90	2.00	2.51	3.23	2.38	2.75	4.64	2.23	3.16	2.81
Yeast 1000	2.45	2.71	1.75	2.31	2.83	2.31	2.53	3.46	2.13	2.68	2.51
Yeast 2000	2.55	2.79	1.97	2.44	3.04	2.32	2.64	3.57	2.16	2.76	2.61
_ A			2.45	-		2.68			2.94		
B	2.57	3.32	2.17		-			-	-		
_≝ A*B		2.83	1.95		3.10	2.36		4.03	2.20		
LSD at 0.05	A; 0.0	02 B;	0.02	C; 0.04	A*B;	0.04	4*C; 0.0	6 B*0	C; 0.06	A*B*0	C; 0.12
N.S.= Nutrier	nt Solu	tion (C	ontrol)	S	A = Sa	licylic a	cid			:
AsA = Ascorbic acid ; α-toco. = α-tocopherol											
AsA = Ascorbic acid α-toco. = α-tocopherol Yeast = Yeast extract											!

Table (9) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on shoot dry weight (g) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

Salinity N.S.+ NaCl N.S.+ CaCl ₂ N.S.+ (NaCl+CaCl ₂)											
(A)		0			~	(D)	-	(<u>1:1) W/</u>	w	Mean (C)
(C) ma/		Cond). (B)	Mean	Conc). (B)	Mean	Con	C. (B)	Mean	(-)
(C) IIIg/L	N.S.	2000	4000	(A°C)	2000	4000	(A°C)	2000	4000	(A*C)	
\	0.04	0.00	0.40	/5	days	Trom	sowing	4.05	0.00	0.04	0.04
vvater	0.84	0.88	0.48	0.73	1.08	0.72	0.88	1.25	0.63	0.91	0.84
SA 75	0.91	1.08	0.63	0.87	1.25	0.83	1.00	1.66	0.71	1.10	0.99
SA 150	0.87	1.00	0.56	0.81	1.20	0.78	0.95	1.34	0.68	0.96	0.91
ASA 50	0.90	1.05	0.62	0.86	1.24	0.82	0.99	1.51	0.71	1.04	0.96
AsA 100	0.90	1.02	0.57	0.83	1.22	0.81	0.97	1.39	0.69	0.99	0.93
a-toco 50	0.87	1.03	0.56	0.82	1.21	0.79	0.96	1.36	0.69	0.97	0.92
a-toco 100	0.90	1.03	0.61	0.84	1.23	0.80	0.98	1.40	0.70	1.00	0.94
Yeast 1000	0.84	0.93	0.50	0.76	1.09	0.74	0.89	1.27	0.63	0.91	0.85
Yeast 2000	0.85	0.97	0.54	0.79	1.18	0.76	0.93	1.32	0.67	0.95	0.89
A			0.81			0.95			0.98		
B	0.87	1.19	0.67								
_≝ A*B		1.00	0.56		1.19	0.78		1.39	0.68		
I SD at 0.05	A;										
202 41 0101	0.004	4 B; (0.004	C; 0.01	A*B;	0.01	A*C; 0	.01	B*C; 0	.01	A*B*C; 0.02
				90	davs	from	0.011/10.01				
Water	2.83	3.44	1.12	2.47	4.27	2.45	3.18	4.75	1.74	3.11	2.92
Water SA 75	2.83 3.40	3.44 4.14	1.12 1.87	2.47 3.13	4.27 4.86	2.45 2.82	3.18 3.69	4.75 5.98	1.74 2.46	3.11 3.95	2.92 3.59
Water SA 75 SA 150	2.83 3.40 3.11	3.44 4.14 3.92	1.12 1.87 1.67	2.47 3.13 2.90	4.27 4.86 4.57	2.45 2.82 2.71	3.18 3.69 3.46	4.75 5.98 5.30	1.74 2.46 2.18	3.11 3.95 3.53	2.92 3.59 3.30
Water SA 75 SA 150 AsA 50	2.83 3.40 3.11 3.30	3.44 4.14 3.92 4.07	1.12 1.87 1.67 1.83	2.47 3.13 2.90 3.07	4.27 4.86 4.57 4.81	2.45 2.82 2.71 2.78	3.18 3.69 3.46 3.63	4.75 5.98 5.30 5.77	1.74 2.46 2.18 2.36	3.11 3.95 3.53 3.81	2.92 3.59 3.30 3.50
Water SA 75 SA 150 AsA 50 AsA 100	2.83 3.40 3.11 3.30 3.26	3.44 4.14 3.92 4.07 3.97	1.12 1.87 1.67 1.83 1.71	2.47 3.13 2.90 3.07 2.98	4.27 4.86 4.57 4.81 4.69	2.45 2.82 2.71 2.78 2.76	3.18 3.69 3.46 3.63 3.57	4.75 5.98 5.30 5.77 5.40	1.74 2.46 2.18 2.36 2.31	3.11 3.95 3.53 3.81 3.66	2.92 3.59 3.30 3.50 3.40
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50	2.83 3.40 3.11 3.30 3.26 3.19	3.44 4.14 3.92 4.07 3.97 3.62	1.12 1.87 1.67 1.83 1.71 1.74	2.47 3.13 2.90 3.07 2.98 2.85	4.27 4.86 4.57 4.81 4.69 4.60	2.45 2.82 2.71 2.78 2.76 2.73	3.18 3.69 3.46 3.63 3.57 3.51	4.75 5.98 5.30 5.77 5.40 5.32	1.74 2.46 2.18 2.36 2.31 2.29	3.11 3.95 3.53 3.81 3.66 3.60	2.92 3.59 3.30 3.50 3.40 3.32
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100	2.83 3.40 3.11 3.30 3.26 3.19 3.25	3.44 4.14 3.92 4.07 3.97 3.62 4.09	1.12 1.87 1.67 1.83 1.71 1.74 1.76	2.47 3.13 2.90 3.07 2.98 2.85 3.03	4.27 4.86 4.57 4.81 4.69 4.60 4.76	2.45 2.82 2.71 2.78 2.76 2.73 2.79	3.18 3.69 3.46 3.63 3.57 3.51 3.60	4.75 5.98 5.30 5.77 5.40 5.32 5.63	1.74 2.46 2.18 2.36 2.31 2.29 2.32	3.11 3.95 3.53 3.81 3.66 3.60 3.73	2.92 3.59 3.30 3.50 3.40 3.32 3.45
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000 Yeast 2000	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21
Vater SA 75 SA 150 AsA 50 AsA 100 a-toco 50 a-toco 100 Yeast 1000 Yeast 2000	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21
Water SA 75 SA 150 AsA 50 AsA 100 a-toco 50 a-toco 100 Yeast 1000 Yeast 2000 <u>A</u> <u>B</u>	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05 3.14	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81 4.60	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87 2.16	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000 Yeast 2000 Yeast 2000 G B B A*B	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05 3.14	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81 4.60 3.85	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87 2.16 1.63	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56 4.56	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47 2.68	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13 5.36	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56 2.17	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000 Yeast 2000 G B ⊕ A*B LSD at 0.05	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05 3.14 3.14	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81 4.60 3.85 2 B; 0	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87 2.16 1.63 .02	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82 C; 0.03	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56 4.60 A*B; 0	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47 2.68 0.03	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13 5.13 5.36 5.8*(0	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56 2.17 C; 0.05	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21 *B*C; 0.09
Water SA 150 AsA 50 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000 Yeast 2000 A SA As A N.S. = Nut	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05 3.14 3.14	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81 4.60 3.85 2 B; 0 olutio	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87 2.16 1.63 .02 (Con	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82 C; 0.03 trol)	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56 4.60 A*B; 0	2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47 2.68 0.03	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41 3.41	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13 5.13 5.36 5 B*(alicyli	1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56 2.17 C; 0.05 c acid	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21 A*B*C; 0.09
Water SA 75 SA 150 AsA 50 AsA 100 α-toco 50 α-toco 100 Yeast 1000 Yeast 2000 A B B B A*B LSD at 0.05 N.S.= Nut AsA = As	2.83 3.40 3.11 3.30 3.26 3.19 3.25 2.85 3.05 3.05 3.14 3.14 A; 0.0 rient S corbic	3.44 4.14 3.92 4.07 3.97 3.62 4.09 3.58 3.81 4.60 3.85 2 B; 0 olution acid	1.12 1.87 1.67 1.83 1.71 1.74 1.76 1.33 1.60 2.87 2.16 1.63 .02 0 (Con	2.47 3.13 2.90 3.07 2.98 2.85 3.03 2.59 2.82 C; 0.03 ttrol)	4.27 4.86 4.57 4.81 4.69 4.60 4.76 4.29 4.56 4.60 A*B; (2.45 2.82 2.71 2.78 2.76 2.73 2.79 2.48 2.60 3.47 2.68 0.03	3.18 3.69 3.46 3.63 3.57 3.51 3.60 3.21 3.41 3.41 4*C; 0.0 SA = S a-toco	4.75 5.98 5.30 5.77 5.40 5.32 5.63 4.96 5.13 5.13 5.36 5.8*(alicyli = α-t(1.74 2.46 2.18 2.36 2.31 2.29 2.32 1.89 2.01 3.56 2.01 3.56 2.17 C; 0.05 c acid	3.11 3.95 3.53 3.81 3.66 3.60 3.73 3.23 3.40	2.92 3.59 3.30 3.50 3.40 3.32 3.45 3.01 3.21 A*B*C; 0.09

Table (10) Effect of pre-soaking seeds in SA, AsA, α-toco. or Yeast extract on number of leaves per plant of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

Salin (A)	nity)	-	N.	S.+ Na	aCI	N.:	S.+ Ca	Cl ₂	N.S.+ ('	(NaCl+ 1:1) w/\	CaCl₂) ₩	
Treatm	ent		Cond	c. (B)	Mean	Cond	c. (B)	Mean	Con	c. (B)	Mean	Mean (C)
(C) mg	g/L	N.S.	2000	4000	(A*C)	2000	4000	(A*C)	2000	4000	(A*C)	
					75	5 days	from s	sowing				
Water		11.33	12.67	8.33	10.78	12.33	11.33	11.67	13.33	11.33	12.00	11.48
SA 75		12.33	12.67	10.67	11.89	13.33	11.33	12.33	14.67	11.33	12.78	12.33
SA 150)	12.33	12.33	10.33	11.67	12.33	11.33	12.00	13.33	11.00	12.22	11.96
AsA 50)	12.33	12.33	10.33	11.67	12.67	11.33	12.11	14.33	11.67	12.78	12.19
AsA 10	00	11.67	12.33	10.33	11.44	12.33	11.33	11.78	13.33	11.33	12.11	11.78
a-toco	50	12.33	12.33	10.67	11.78	12.33	11.33	12.00	13.33	11.00	12.22	12.00
a-toco	100	12.00	12.33	10.67	11.67	13.00	11.67	12.22	14.00	11.33	12.44	12.11
Yeast 1	1000	11.33	13.00	9.33	11.22	12.33	11.33	11.67	13.00	11.33	11.89	11.59
Yeast 2	2000	11.67	12.33	10.33	11.44	12.67	11.33	11.89	13.33	11.00	12.00	11.78
_ A	۱.			11.51			11.96			12.27		
Bar	3	11.93	12.90	10.91								
ĔΑ	*В		12.48	10.11		12.59	11.37		13.63	11.26		
LSD at	0.05	A; 0.3	89 B;	0.39 0	C; 0.67	A*B;	0.67	A*C; 1.1	7 B*0	C; 1.17	A	*B*C; 2.02
					90) days	from s	sowing				
Water		17.67	19.67	13.00	16.78	21.33	16.33	18.44	21.67	15.67	18.33	17.85
SA 75		19.67	21.67	15.33	18.89	22.67	18.33	20.22	25.67	16.67	20.67	19.93
SA 150)	18.33	20.33	14.33	17.67	21.67	17.67	19.22	25.33	16.33	20.00	18.96
AsA 50)	19.67	21.00	15.00	18.56	23.00	17.33	20.00	25.33	16.00	20.33	19.63
AsA 10	0	18.67	20.67	14.33	17.89	21.67	17.67	19.33	25.33	15.67	19.89	19.04
a-toco	50	18.67	20.67	14.00	17.78	21.67	17.67	19.33	25.33	15.67	19.89	19.00
α-toco	100	19.33	22.00	14.67	18.67	21.33	17.67	19.44	24.43	15.67	19.81	19.31
Yeast 1	1000	17.33	20.00	13.67	17.00	20.67	17.00	18.33	23.33	15.67	18.78	18.04
Yeast 2	2000	19.00	20.00	14.33	17.78	22.67	17.33	19.67	24.67	16.33	20.00	19.15
_	A			17.89			19.33			19.74		
an	В	18.70	22.36	15.90								
Me	A*B		20.67	14.30		21.85	17.44		24.57	15.96		
LSD at	0.05	A; 0.3	33 B;	0.33 (C; 0.58	A*B;	0.58	4*C; 0.9	99 B*C	C; 0.99	A	*B*C; 1.73
N.S.=	Nutr	ient S	olutio	n (Con	trol)			SA = S	alicyli	c acid		
AsA =	= Asc	orbic	acid					α-toco	. = α-to	ocophe	rol	
Yeast	t = Ye	east ex	tract									

Table (11) Effect of pre-soaking seeds in SA, AsA, α -toco. or Yeast extract on leaf area (cm²) of sweet pepper grown under non-saline and saline conditions at 75 and 90 days from sowing using NFT.

Colinity		ig iti	••								
Salinity				~			~		N.5.+		
(A)		N.8	5.+ Na	CI	N.5	.+ Ca		(NaCI+) (1:1)	
l reatment	[-			<u> </u>			_	<u>W/W</u>		Mean (C)
(C) mg/L		Conc	. (B)	Mean	Conc	. (B)	Mean	Conc	с. (В)	Mean	
	N.S.	2000	4000	(A*C)	2000	4000) (A*C)	2000	4000	(A*C)	
				75 da	ys fro	m sov	wing				
Water	303.9	355.9	176.1	278.6	400.6	254.9	9319.8	434.4	209.4	315.9	304.8
SA 75	351.6	400.0	204.0	318.5	432.1	298.9	9360.9	532.5	252.6	378.9	352.8
SA 150	338.2	385.4	200.9	308.1	418.5	282.3	3346.3	479.5	232.0	349.9	334.8
AsA 50	347.9	399.6	202.8	316.8	430.7	296.6	358.4	506.4	248.7	367.7	347.6
AsA 100	342.5	387.2	201.6	310.4	421.9	283.6	349.3	480.7	243.8	355.7	338.5
α-toco 50	340.9	387.1	201.5	309.8	419.3	282.6	6347.6	479.8	232.8	351.2	336.2
α-toco 100	342.9	395.6	202.1	313.5	426.2	287.9	9352.4	506.3	246.4	365.2	343.7
Yeast 1000	314.2	365.7	184.5	288.1	404.7	266.6	6328.5	444.2	213.4	323.9	313.5
Yeast 2000	324.2	379.2	188.1	297.2	414.3	275.4	1338.0	461.9	229.8	338.6	324.6
⊆ A			304.6			344.6			349.7		
ва В	334.0	427.8	237.0								
≥ _{A*B}		384.0	195.7		418.7	281.0)	480.6	234.3		
LSD at							A*C;				
0.05	A; 12	.0 B; ⁻	12.0 C	; 20.9	A*B; 2	20.9	36.1	B*0	C; 36.1	A*E	8*C; 62.6
				90 da	ays fro	m so	wing				
Water	716.7	1010.9	304.6	677.4	1149.6	559.8	3808.7	1256.8	457.1	810.2	765.5
SA 75	1004.0	1147.2	454.5	868.5	1248.8	704.4	1985.8	1416.9	542.4	987.8	947.4
SA 150	918.0	1054.0	411.6	794.5	1196.1	665.3	3926.4	1336.0	506.1	920.0	880.3
AsA 50	992.6	1130.4	442.3	855.1	1238.3	701.8	3977.6	1416.6	540.5	983.2	938.6
AsA 100	968.0	1074.5	429.9	824.1	1213.8	688.8	3956.9	1377.1	527.2	957.4	912.8
a-toco 50	947.6	1059.0	420.9	809.2	1203.3	681.8	3944.2	1365.5	518.5	943.9	899.1
α-toco 100	972.3	1089.8	438.1	833.4	1221.3	690.5	5961.3	1393.9	528.1	964.8	919.8
Yeast 1000	738.8	1021.1	374.6	711.5	1162.1	606.2	2835.7	1264.8	472.2	825.3	790.8
Yeast 2000	820.1	1042.1	407.5	756.6	1172.0	647.7	7879.9	1306.3	503.9	876.7	837.7
_ A			792.3	-		919.6			918.8		
B	897.6	1206.2	526.9								
≚ A*B		1069.9	409.3		1200.6	660.7	7	1348.2	510.7		
LSD at							A*C;				
0.05	A; 53	.2 B;	53.2 C	; <u>92</u> .1	A*B; 9	2.1	159.5	B*C	; 159.5	5 A*B	*C; 276.3
N.S	6.= Nutr	ient So	olutio	n (Cor	ntrol)			SA =	Salicy	lic aci	id
	AsA	= Asc	orbic	acid			(a-toco.	= α-to	cophe	erol
	Yeas	st = Yea	ast ex	tract							

The reduction effect of salinity on root length and plant height may be due to the suppressing effects of salinity on meristematic cell division and elongation as well as root penetration (Hatung, 2004) and/or reduction in the length of root tip elongation zone (Zidan *et al.*, 1990) and/or reduction in the root extension rates might come from the marked lowering of root radial hydraulic conductivity (Azaizeh *et al.*, 1992) and/or reduces the ability of plants to take up water, this quickly causes reduction in growth rate and the initial reduction in shoot growth is probably due to hormonal signals generated by the roots (Munns, 2002), and/or inhibited apical growth in plants as well as internal hormonal imbalance (Younis *et al.*, 2003).

In the present investigation, plant height of sweet pepper plants was less sensitive to salt stress than root length. Salinity induced a rapid reduction in root length than shoot height which may be due to, the fact that root system is directly in contact with salinity and is potentially the first line of defense, (Cramer *et al.*, 1994), depletion of O_2 deprives those plants of its primary energy source and root growth declines. Also, Mohamed *et al.* (1998) revealed that root morphology parameters are additional sensitive parameters which are affected by salt stress. Therefore, can be employed as criteria for monitoring plant response mechanisms to salt stress. Thus, roots are reported to be among the first organs affected by salt stress and are most sensitive.

The retardation in plant growth caused by salinity may be attributed mainly to the osmotic stream, which reduced availability and uptake of water and essential nutrients (Neumann, 1997) as well as the excessive accumulation of both toxic ions (Na⁺ and Cl⁻) and intermediate compounds such as reactive oxygen species (Rodriguez *et al.*, 2004) which cause damage to DNA, lipid and proteins and consequently a decrease in plant growth. In addition, Fricke *et al.* (2004) found that salinity increased ABA and ethylene concentration in plant tissue, and decreased endogenous level of IAA, GA₃ and auxin content.

Generally, the reduction in sweet pepper fresh and dry weights in the present study might be attributed to a decrease in either leaf number (Table, 10) or leaf area per plant (Table, 11) and decreased stomatal conductance (AL-Kahafaf *et al.*, 1990) and consequently less CO_2 available for carboxylation reactions in the photosynthesis apparatus ((Yadav *et al.*, 1996), which lead to reduction of photosynthetic capacity resulting less net assimilation and relative growth rates, ribulose-1,5-bisphosphate carboxylase/ oxygenase activity (Fedina and Tsonev, 1997).

In this respect, Khavari-Nejad (1988) proposed that the mechanism by which salt reduces leaf area expansion during mechanism is the reduction in water potential in the root zone which transmitted via the xylem to the leaves and reduced cell turgor and consequently decreased cell division and expansion.

Presoaking seeds in SA and their enhancement in growth of salt stressed plants might have been due to SA-induced changes in the biochemical or physiological processes (Hussein *et al.*, 2007), increased auxin and zeatin as well as gibberellin in leaves (Shehata *et al.*, 2000); and increased the level of cell division within the apical meristem of seedling roots causing an increase in plant growth (Sakhabutdinova *et al.*, 2003). Moreover, Ashraf (2004) suggested that SA-induced enhancement in growth by

adversely affecting various physiological and biochemical processes including photosynthesis, antioxidant capacity and ion homeostasis. In this respect, El-Tayeb (2005) reported that SA-induced increase in growth could be related to enhanced activity of antioxidants that protect the plants from oxidative damage. Furthermore, Afzal *et al.* (2006) mentioned that SA treatment prevented decrease in IAA and cytokinin content completely, which reduced stress-induced inhibition of wheat growth.

Concerning the enhanced effect of pre-soaking seeds with AsA on plant height it may be due to that AsA is a major primary antioxidant (Nijs and Kelley, 1991), plays an important role in preserving the activity of enzymes (Padh, 1990), implicated in the regulation of the cell division, cell cycle progression (Smirnoff, 1996) cell elongation (De Tullio *et al.*, 1999) and is the major antioxidant that scavenges H_2O_2 (Chen and Gallie, 2004), which may be cause deterioration of membrane lipids, leading to increased leakage of solutes from membranes (Mishra and Choudhuri, 1999).

Concerning the positive effect of AsA on leaf number it may be due to the beneficial role of this organic acid in plant metabolism (Smirnoff, 1996) and/or nutrient uptake (Gonzalez-Reyes *et al.*, 1995). Moreover, the positive effect of ascorbic acid on leaf area per plant may be due to its involvement in the regulation of the fundamental cellular processes of photosynthetic and regulation of photosynthesis, cell vacuolarization, cell expansion and cell division (Smirnoff, 1996).

Concerning the positive effect on sweet pepper plant growth by yeast extract treatment it was also obtained by Skoog and Miller, (1957), who mentioned that yeast via its cytokinins content improved plant growth. In addition, El-Desouky *et al.* (1998) revealed that soaking squash seeds in yeast extracts caused an increase in the size of the root system that reached the high level of significance. Simultaneously all vegetative growth aspects i.e. stem length, internodes length, number of internodes, number of leaves and total leaf area per plant were positively responded.

REFERENCES

- Afzal, I.; Basra, S.M.A.; Hameed, A. and Farooq, M. 2006. Physiological enhancements for alleviation of salt stress in wheat. *Pak. J. Bot.*, 38 (5): 1649-1659.
- AL-Kahafaf, S.; Adnan, A. and AL-Asadi, N.M. 1990. Dynamics of root and shoot growth of barley under various levels of salinity and water stress. *Agric. Water Mang.*, 18: 63-75.
- Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. *Flora*, 199: 361-376.
- Azaizeh, H.; Gunes, B. and Steudle, E. 1992. Effects of NaCl and CaCl₂ on water transport across root cells of maize seedlings. *Plant Physiol.*, 99: 886-894.
- Casado-Vela, J.; Sellés, S.; Díaz-Crespo, C.; Navarro-Pedreňo, J.; Mataix-Beneyto, J. and Gómez, I. 2007. Effect of composted sewage sludge application to soil on sweet pepper crop (*Capsicum annuum* var.

annuum) grown under two exploitation regimes. *Waste Manag.*, 27: 1509-1518.

- Chen, Z. and Gallie D.R. 2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. *The Plant Cell*, 16: 1143-1162.
- Cooper, A. 1979. The ABC of NFT. Growers Books, London, pp. 59.
- Cramer, G.R. 1992. Kinetics of maize leaf elongation. 2-Response of a Naexcluding cultivar and a Na-including. Exp. Bot., 43: 857-864.
- Cramer, G.R.; Epstein, E. and lauchli, A. 1989. Na-Ca interactions in barley seedlings: Relationship to ion transport and growth. *Plant Cell and Environ.*, 12: 551-558.
- Cramer, G.R.; Alberico, G.J. and Schmidt, C. 1994. Leaf expansion limits dry matter accumulation of salt-stressed maize. *Aust. J. Plant Physiol.*, 21: 663-674.
- Davies, H.W. and Monk-Talbot, L.S. 1990. Permeability characteristics and membrane lipid composition of potato tuber cultivars in relation to Ca²⁺ deficiency. *Phytochemistry*, 29: 2833-2835.
- De Tullio, M.C.; Paciolla, C.; Dalla Vecchia, F.; Rascio, N.; D'Emerico, S.; De Gara, L.; Liso, R. and Arrigoni, O. 1999. Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation. *Planta*, 209: 424-434.
- El-Banna, M.F. 2006. Comparative studies on structure of some flowering plants as affected by salinity. M.Sc. *Thesis, Fac. Agric. Mansoura Univ. Egypt.*
- El-Desouky, S.A.; Wanas, A.L. and Khedr, Z.M. 1998. Utilization of some natural plant extracts (of garlic and yeast) as seed soaked materials to squash (*Cucurbita pepol* L.). I-Effect on growth, sex expression and fruit yield and quality. *Ann. Agric. Sci. Moshthor*, 36 (2): 839-854.
- El-Tayeb, M.A., 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. *Plant Growth Reg.*, 45: 212-224.
- Etehadnia, M. 2009. Salt stress tolerance in potato genotypes. Ph.D. *Thesis, College of Graduate Studies and Research, Univ. of Saskatchewan, Saskatoon.*
- Fedina, I.S. and Tsonev, T.D. 1997. Effect of pretreatment with methyl jasmonate on the response of *pisum sativum* to salt stress. *J. Plant Physiol.*, 151: 735-740.
- Fricke, W.; Akhiyarova, G.; Veselov, D. and Kudoyarova, G. 2004. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. *J. Exp. Bot.* 55 (399): 1115-1123.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agriculture Research. *John Wiley and Sons, Inc. New York.*
- Gonzalez-Reyes, J.A.; Alcain, F.J.; Caler, J.A.; Serrano, A.; Cordoba, F. and Navas, P. 1995. *Protoplasma*, 184: 31. Cited From, Ali, Z.A. 2001. Ascorbic acid induced anatomical changes in leaves and stems of tomato plants. *Bulletin of the Nat. Res.Centre Cairo*, 26 (3): 371-382.
- Hatung, W. 2004. Plant response to stress: Abscisic acid fluxes. *Marcel Dekker. Inc., New York.*

- He, T. and Cramer, G. 1992. Growth and mineral nutrition of six rapid cycling Brassica species in response to seawater salinity. *Plant Soil*, 139: 285-294.
- Houimli, S.M.; Denden, M. and El Hadj, S.B. 2008. Induction of salt tolerance in pepper (*Capsicum annuum*) by 24-epibrassinolide. *Eur. Asia. J. Bio. Sci.*, 2 (10): 83-90.
- Hussein, M.M.; Balbaa, L.K. and Gaballah, M.S. 2007. Developing a salt tolerant cowpea using alpha tocopherol. *J. of Appl. Sci. Res.*, 3(10): 1234-1239.
- Khafagy, M.A.; Arafa, A.A. and El-Banna, M.F. 2009. Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. *Aus. J. of Crop Sci.*, 5: 257-267.
- Khan, M.S.A; Hamid, A.; Satohuddin, A.B.M.; Quasem, A. and Karim, M.A. 1997. Effect of sodium chloride on growth, photosynthesis and mineral ions accumulation of different types of rice (*Oryza sativa* L.). *J. Agrc. and Crop Sci.*,179: 149-161.
- Khavari-Nejad, R.A. 1988. Photosynthetic and growth characteristics in NaClstressed *Tradescantia albiflora* L. *Photosynthetica* 22 (1): 116-120.
- Khosravinejad, F.; Heydari, R. and Farboodnia, T. 2009. Effect of salinity on organic solutes contents in barley. *Pak. J. Biol. Sci.*, 12: 158-162.
- Koller, H.R.C. 1972. Leaf area leaf weight relationship in the soybean canopy. *Crop Sci.*, 12: 180-183.
- Lycoskoufis, I.H.; Savvas, D. and Mavrogianopoulos, G. 2005. Growth, gas exchange and nutrient status in pepper (*Capsicum annuum* L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. *Scientia Horti.*, 106: 147-161.
- Marschner, H., 1995. Mineral Nutrition of Higher Plants, second ed. Academic Press, London.
- Mishra, A. and Choudhuri, M.A. 1999. Effect of salicylic acid on heavy metalinduced membrane deterioration mediated by lipoxygenase in rice. *Biol. Plant.*, 42: 409-415.
- Mohamed, M.; Shibli, R.; Ajlouni, M. and Nimri, L. 1998. Tomato root and shoot responses to salt stress different levels of phosphorus nutrition. *J. Plant. Nutr.*, 21: 1667-1680.
- Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651-681.
- Nagodawithana, W.T. 1991. Yeast technology. Universal foods cooperation Milwauke, Wisconsin. *Published by Van Nostrand, New York,* pp. 273.
- Navarro, J.M.; Flores, P.; Garrido, C. and Martinez, V. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. *Food Chem.*, 96: 66-73.
- Neumann, P.M. 1997. Salinity resistance and plant growth. *Plant Cell and Environ.*, 20 (9): 1193-1198.
- Nijs, D. and Kelley, P.M. 1991. Vitamin C and E. donate single hydrogen atoms *in vivo*. *FEBS Lett.*, 284: 147-151.
- Padh, H. 1990. Cellular function of ascorbic acid. *Biochem. Cell Biol.*, 68: 1270-1275.

- Rodriguez, A.A.; Cordoba, A.R.; Ortega, L. and Taleisnik, E. 2004. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. *J. Exp. Bot.*, 41: 1383-1390.
- Roos, W. 2000. Ion mapping in plant cells-methods and applications in signal transduction research. *Planta*, 210: 347-370.
- Sakhabutdinova, A.R.; Fatkhutdinova, D.R.; Bezrukova, M.V. and Shakirova, F.M. 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. *Bulg. J. Plant Physiol.*, Special Issue 9-314.
- Schwabe, K.A.; Iddo, K. and Knap, K.C. 2006. Drain water management for salinity mitigation in irrigated agriculture. *Am. J. Agr. Ecol.*, 88: 133-140.
- Shehata, S.A.M.; Saeed, M.A. and Abou EL-Nour, M.S. 2000. Physiological response of cotton plant to the foliar spray with salicylic acid. *Ann. Agric. Sci. Ain Shams Univ.* 45 (1): 1-18.
- Skoog, F. and Miller, C.O. 1957. Bilogical action of growth substance. *Cambridge Univ. Press, Cambridge*, 195-200.
- Smalle, J. and Van Der Straeten, D. 1997. Ethylene and vegetative development. *Physiol. Plant.*, 100: 593-605.
- Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. *Ann. of Bot.*, 78: 661-669.
- Tester, M. and Davenport, R. 2003. Na⁺ tolerance and Na⁺ transport in higher plants. *Ann. Bot., 91*: 503-527.
- Yadav, R.; Flowers, T.J. and Yeo, A.R. 1996. The involvement of transpirational bypass flow in sodium uptake by high and low sodium transporting lines of rice developed through intravarietal selection. *Plant cell and Environ.*, 19: 329-336.
- Younis, M.E.; El-Shahaby, O.A.; Nemat Ally, M.M. and El-Bastawisy Zeinab, M. 2003. Kinetin alleviates the influence of waterlogging and salinity in *Vigna sinensis* and *Zea mays. Agronome*, 23: 277-285.
- Zidan, I.; Azaizeh, H. and Neumann, P.M. 1990. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? *Plant Physiol.*, 93: 7-11.

التغلب على التاثيرات الضارة لملوحة كلوريدى الصوديوم والكالسيوم على نمو نبات الفلفل الحلو بإستخدام بعض الفيتامينات والمنظمات الحيوية ومستخلص الخميرة . عرفه أحمد عرفه ، محمود عبد المنعم خفاجى ، عبد الله محمد أبو الخير ، رمضان عبد المنعم فوده ومصطفى فؤاد البنا قسم النبات الزراعى – كلية الزراعة – جامعة المنصورة - مصر

تمت هذه التجربة بهدف دراسة تأثير نقع بذور الفلفل الحلو في حمض الأسكوربيك أو الألفاتوكوفيرول أو حمض السالسليك أو مستخلص الخميرة تحت الظروف العادية أو ظروف الملوحة علي نمو نبات الفلفل الحلو.

في معظم الحالات أدي التركيز المنخفض من الأملاح المختلفة (٢٠٠٠ جزء في المليون) إلى حدوث زيادة معنوية في صفات النمو (إرتفاع النبات، طول الجذر، الوزن الغض والجاف للمجموع الخضري والجذري، وكذلك عدد الأوراق والمساحة الورقية) بعد ٥٧ و ٩٠ يوم من النقع. كما لوحظ أن مخلوط الملحين كان الأكثر تأثيراً يليه ملح كلوريد الكالسيوم ثم كلوريد الصوديوم. وقد أدت زيادة تركيز الملوحة إلى ٢٠٠٠ جزء في المليون إلى نقص معظم صفات النمو. كما أدي نقع البذور إلى إحداث زيادة وتحسين صفات النمو. ولقد لوحظ أن حمض الألفاتوكونيرول بتركيز ٥٠ جزء في المليون أو حمض السالسليك بتركيز ٥٧ جزء في المليون أو الألفاتوكونيرول بتركيز ٥٠ جزء في المليون الأكثر تأثيراً م

قام بتحكيم البحث

- أد / سمير محمد عبد الجواد سلامه
 - <u>ا د / محمد عبد العزيز نصار</u>

كلية الزراعة – جامعة المنصورة كلية الزراعة – جامعة القاهره