

Mansoura University
Faculty of Engineering
Mech. Power Eng. Dept.

1st Year Production.
May 2012.
Time: 2 Hrs.

Answer all the questions - Assume reasonable values for ungiven data:

1- a) The equation of the velocity distribution for a certain flow is given by:

$$
u=5 y-6 y^{2} \quad(\mathrm{~m} / \mathrm{s})
$$

where y is the distance from the boundary in (m), the specific gravity of the fluid $S=0.9$ and the kinematic viscosity $v=3.52 \times 10^{-4}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$. Find tangential shear stress (τ) at: i) the boundary.
ii) at 4 cm from the boundary. (10 Marks)
b) The gate $A B$ shown in figure (1), is $3(\mathrm{~m})$ wide. Find:
$i)$ the horizontal component of force and its line of action.
ii) the vertical component of force.
iii) the resultant force and its line of action.
(10 Marks)

Fig. (1-b)

2-a) A uniform wooden cylinder has a diameter of 1 m and 3 m height. It's specific gravity is ($S=$ 0.7). Checkup it's stability when floating over water.
(10 Marks)
b) A circular jar 1 m in diameter and 2 m high contains water to a height of 1 m . The jar is rotated about its vertical axis at 180 rpm . Determine:
i) the height of the paraboloid of revolution from the base of the cylinder,
ii) the maximum pressure and its location, and
iii) the pressure at a point 0.2 m from the center and 0.25 m from the base.
(10 Marks)
3-a) Water flows through the pump in Fig. 3-a at $0.06 \mathrm{~m}^{3} / \mathrm{s}$. Head losses between 1 and 2 are 2.5 m of water, and the pump delivers 4 Kw to the flow with efficiency of 90%. What should the mercury manometer reading h be?
(10 Marks)
b) Determine the air pressure required to have a discharge of $100 \mathrm{lit} / \mathrm{s}$ through the pipe system shown in Fig (3-b). Assume $(f=0.02$) in both pipes. Neglect minor losses.
(10 Marks)

Fig 3-a

Fig 3-b

