Date: 25/9/2013 Time: 3 hours Full mark: 60 marks M. Sc. Final Exam Sept. 2013 Abstract Algebra Code: 8500



Mansoura University Faculty of Engineering Math. and Engineering Phys. Dept.

)

)

| Prob. | (1) [ | 12 | pt.] |
|-------|-------|----|------|
|-------|-------|----|------|

| (a) [4 pt.] | Define | each | of the | following: |
|-------------|--------|------|--------|------------|
|-------------|--------|------|--------|------------|

- i) Invariant subgroup,
- iii) Maximal element,

- ii) Homomorphism,
- iv) Quotient group.
- (b) [4 pt.] State the difference between each of the following:
  - i) Right coset and left coset,
- ii) Into mapping and onto mapping,
- iii) Proper and improper subgroups, iv) Homomorphism and isomorphism.
- (c) [4 pt.] State that each of the following statements is true or false and correct the false statements:
  - i) If  $\alpha$  is a mapping of a set S onto a set T, then  $\alpha$  has a unique inverse. (
  - ii) A elation R on a set S is called reflexive if whenever aRb then bRa. (
  - iii) An equivalence relation *R* on a set *S* effects a partition of *S*, and conversely, a partition of *S* defines an equivalence relation on the set *S*.
  - (iv) Homomorphic image of any cyclic group is cyclic.

## Prob. (2) [12 pt.]

- (a) [3 pt.] Prove that; If  $\alpha$  is one to one mapping of a set S onto a set T then  $\alpha$  has a unique inverse and conversely.
- (b) [3 pt.] Prove that  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ .
- (c) [3 pt.] Prove that:  $A (B \cup C) = (A B) \cap (A C)$ .

## (d) [3 pt.] Prove that:

- i)  $x \rightarrow x + 2$  is a mapping of N into, but not onto, N.
- ii)  $x \rightarrow 3x 2$  is a one-to-one mapping of **Q** onto **Q**.

iii)  $x \rightarrow x^3 - 3x^2 - x$  is a mapping of **R** onto **R** but is not one-to-one.

Prob. (3) [14 pt.]

- (a) [2 pt.] Show that " is congruent to" on the set T of all triangles in a plane is an equivalence relation.
- (b) [2 pt.] Prove that if  $[a] \cap [b] \neq \emptyset$ , then [a] = [b].
- (c) [3 pt.] Prove that: The identity element, if one exist, with respect to a binary operation  $\circ$  on a set S is unique.
- (d) [4 pt.] Express in cyclic notation on 5 symbols:
  i) the product (23) \circ(13)(245) and (13)(245) \circ(23),

## Turn over the page

ii) the inverse of (23) and (13)(245).

(e) [3 pt.] show that multiplication is a binary operation on  $S = \{1, -1, i, -i\}$  where  $i = \sqrt{-1}$ .

## Prob. (4) [14 pt.]

(a) [3 pt.] Show that g, the additive group  $Z_4$ , is isomorphic to g', the multiplicative group of none-zero elements of  $Z_5$ .

(b) [3 pt.] Does the set of non-zero residue classes modulo 4 form a group with respect to addition? with respect to multiplication?

- (c) [2 pt.] Prove that when  $a, b \in g$ , each of the equations  $a \circ x = b$  and  $y \circ a = b$  has a unique solution.
- (d) [3 pt.] Prove that a non empty subset g' of a group g is subgroup of g if and only if, for all  $a, b \in g'$  and  $a^{-1} \circ b \in g'$ .
- (e) [3 pt.] Prove that: In a homomorphism between two groups g and g', their identity element correspond, and if  $x \in g$  and  $x' \in g'$  correspond so also do their inverses.

Prob. (5) [12 pt.]

- (a) [2 pt.] Prove that: If R is a ring with zero element z, then for all  $a \in R$ ,  $a \cdot z = z \cdot a = z$ .
- (b) [3 pt.] Prove that: if p is an arbitrary element of a commutative ring R, then  $P = \{p.r : r \in R\}$  is an ideal in R.
- (c) [4 pt.] Prove that; the set  $M = \{(a, b, c, d) : a, b, c, d \in \mathbf{Q}\}$ , with addition and multiplication defined by

(a, b, c, d) + (e, f, g, h) = (a+e, b+f, c+g, d+h)

 $(a, b, c, d) \cdot (e, f, g, h) = (ae + bg, af + bh, ce + dg, cf + dh)$ 

For all (a, b, c, d),  $(e, f, g, h) \in M$  is a ring.

(d) [3 pt.] Prove that; the set  $P = \{(a, b, -b, a) : a, b \in \mathbb{Z}\}$ , with addition and multiplication defined by

(a, b, -b, a) + (c, d, -d, c) = (a+c, b+d, -b-d, a+c)

 $(a, b, -b, a) \cdot (c, d, -d, c) = (ac - bd, ad + bc, -ad - bc, ac - bd)$ 

is a commutative subring of the non-commutative ring M of problem (5c).

With all best wishes Dr. Waleed El-Beshbeeshy