Prob. (1) [12 pt.]
(a) [4 pt.] Define each of the following:
i) Invariant subgroup,
ii) Homomorphism,
iii) Maximal element,
iv) Quotient group.
(b) $[4 \mathrm{pt}$.$] State the difference between each of the following:$
i) Right coset and left coset,
ii) Into mapping and onto mapping,
iii) Proper and improper subgroups,
iv) Homomorphism and isomorphism.
(c) [4 pt.] State that each of the following statements is true or false and correct the false statements:
i) If α is a mapping of a set S onto a set T, then α has a unique inverse. ()
ii) A elation \boldsymbol{R} on a set \boldsymbol{S} is called reflexive if whenever $a \boldsymbol{R} b$ then $b \boldsymbol{R} a$. ()
iii) An equivalence relation \boldsymbol{R} on a set \boldsymbol{S} effects a partition of \boldsymbol{S}, and conversely, a partition of S defines an equivalence relation on the set S.
(iv) Homomorphic image of any cyclic group is cyclic.

Prob. (2) [12 pt.]
(a) [3 pt.] Prove that; If α is one to one mapping of a set S onto a set T then α has a unique inverse and conversely.
(b) [3 pt.] Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(c) $[3$ pt. $]$ Prove that: $A-(B \cup C)=(A-B) \cap(A-C)$.
(d) $[3 \mathrm{pt}$.$] Prove that:$
i) $x \rightarrow x+2$ is a mapping of N into, but not onto, N .
ii) $x \rightarrow 3 x-2$ is a one-to-one mapping of \mathbf{Q} onto \mathbf{Q}.
iii) $x \rightarrow x^{3}-3 x^{2}-x$ is a mapping of \mathbf{R} onto \mathbf{R} but is not one-to-one.

Prob. (3) [14 pt.]
(a) [2 pt.] Show that " is congruent to" on the set T of all triangles in a plane is an equivalence relation.
(b) $[2$ pt. $]$ Prove that if $[a] \cap[b] \neq \varnothing$, then $[a]=[b]$.
(c) [3 pt.] Prove that: The identity element, if one exist, with respect to a binary operation \circ on a set S is unique.
(d) [4 pt.] Express in cyclic notation on 5 symbols:
i) the product $(23) \circ(13)(245)$ and $(13)(245) \circ(23)$,
ii) the inverse of (23) and (13)(245).
(e) [3 pt.] show that multiplication is a binary operation on $S=\{1,-1, i,-i\}$ where $i=\sqrt{-1}$.
Prob. (4) [14 pt.]
(a) [3 pt.] Show that \boldsymbol{g}, the additive group Z_{4}, is isomorphic to \boldsymbol{g}^{\prime}, the multiplicative group of none-zero elements of Z_{5}.
(b) [3 pt.] Does the set of non-zero residue classes modulo 4 form a group with respect to addition? with respect to multiplication?
(c) [2 pt.] Prove that when $a, b \in \boldsymbol{g}$, each of the equations $a \circ x=b$ and $y \circ a=b$ has a unique solution.
(d) [3 pt.] Prove that a non empty subset g^{\prime} of a group g is subgroup of g if and only if, for all $a, b \in \boldsymbol{g}^{\prime}$ and $a^{-1} \circ b \in \boldsymbol{g}^{\prime}$.
(e) [3 pt.] Prove that: In a homomorphism between two groups g and g^{\prime}, their identity element correspond, and if $\boldsymbol{x} \in \boldsymbol{g}$ and $x^{\prime} \in \boldsymbol{g}^{\prime}$ correspond so also do their inverses.
Prob. (5) [12 pt.]
(a) [2 pt.] Prove that: If \boldsymbol{R} is a ring with zero element \mathbf{z}, then for all $a \in \boldsymbol{R}$, $a \cdot \mathbf{z}=\mathbf{z} \cdot a=\mathbf{z}$.
(b) [3 pt.] Prove that: if p is an arbitrary element of a commutative ring \boldsymbol{R}, then $P=\{p \cdot r: r \in \boldsymbol{R}\}$ is an ideal in \boldsymbol{R}.
(c) [4 pt.] Prove that; the set $M=\{(a, b, c, d): a, b, c, d \in \mathbf{Q}\}$, with addition and multiplication defined by

$$
\begin{gathered}
(a, b, c, d)+(e, f, g, h)=(a+e, b+f, c+g, d+h) \\
(a, b, c, d) \cdot(e, f, g, h)=(a e+b g, a f+b h, c e+d g, c f+d h)
\end{gathered}
$$

For all $(a, b, c, d),(e, f, g, h) \in M$ is a ring.
(d) [3 pt.] Prove that; the set $P=\{(a, b,-b, a): a, b \in \mathbf{Z}\}$, with addition and multiplication defined by $(a, b,-b, a)+(c, d,-d, c)=(a+c, b+d,-b-d, a+c)$ $(a, b,-b, a) \cdot(c, d,-d, c)=(a c-b d, a d+b c,-a d-b c, a c-b d)$
is a commutative subring of the non-commutative ring M of problem (5c).

