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ABSTRACT 

Oscillation criteria are given for the second order nonlinear differential 

equation 

and the generalized Euler-type functional equation 

Since the well known papers of Kamenev [4] , [S] 1970's were published, a 

great number of papers were devoted to study the osciIlatory behavior of second 

order differentid equations using integral criterion (see for example [91, [lo], [12], 

[13]. In [I], Chen and Yeh were able to extend Kamenev's results for the second 

order differential equation. 

Meanwhile, Mahfoud [7] discussed the case of differential functional equation 
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which generalize the results on Euler-type delay equation by Opial f81 and 

Wong [ll]. In this paper we are concerned with oscillatory behavior of soiutions of 

the more general differential equations 

(a (x) h (y (x)) g (y' (x))' + P (x) f (y (x) = 0 ............... (1.1) 

and 

(a(x(h (y(x))g(y'(x)))' + P(x)f(y(q(x)))=O ............... (1.2) 

111 section 2, we discuss the oscillatory behaviour of (1.1) using Kamenev's 

integral criteria1 [I], [4]. In section 3, we study oscillation results for the functional 

differential eqution (1.2). The obtainedresults extend those of [7], [8] and [Ill. 

In what iollows, we consider oly such solutions which are defined for all x 

2 xo 2 0. The oscillatory character is considered in the usual sense, i.e., a 

continuous real-valued function y defined on [xy, =I, for soms x 2 0, is called Y 

oscillatory if its set of zeros is unbounded above, otherwise it is called non 

oscillatory. 

2. Kamenev's integral criteria 

Consider the differential equation 

(a (x) h (y (x)) g (y' (x)))' + P (x) f (y (x)) = 0 ............... (1.1) 

where a,p : [x,, =] + R and h, g, f : R + R. We assume that the functions 

appearing in (1.1) be sufficiently smooth for a local existence and uniqueness 

theoren to hold for (1.1) for x g (xo, m]. We suppose the following hypothesses : 

i (HI) a(~)>O,p(x )>O, f (y (x ) )>Oandh(y(x ) )1c>Ofora l lx2x~2O 
I 
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Theorem 3.2 : Let x 5 0. Assume that g (y') 2 Ky', K 2 1 and 

DD d - Ix a (S) h :y (s)) - O. Suppose that there exists continuously differentiable 

functions. 

{,q:R+ (0) +R+ andp : R +  R 

such that, 

(HI) q (x) 2 p (x) and p' (x) > 0 for x 2 X and lim p (x) = - 
X+* 

(Hz) I f (y) I 2 15 (y) I,{' (y) 2 E, e > 0 and lim p (x) = - 
x 3 -  

Then the equation (1.2) is oscillatory. 

Proof. Suppose that there exists a nonoscillatory solution Y (x) > 0 of (1.2) for x 

5 xo, xo 2 0. Then as in the proof of theoren 3.1, it follows that there exists x l  2 

xo such that y (x) is non-decreasing for x 2 xl. Now choosing x2 2 x l  such that p 

(x) x l  for x 5 x2, then by (1.2) and the assumptions, it follows that 

Thus by assumption if k 2 1, then 

(a (x) h (y (x)) g (y' (x)))' + p (x) 6 (y (x)) 5 0 for x 2 x2 .......-.. (3.9) 

5 (XI 
Multiplying both sides of (3.9) by 5 (Y (P (x))) 

and integrating from x2 to x, we 

obtain 
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theorem includes theorem (A) of Wong 1111. 

2- In a recent paper of Lalli 161, an oscillation criteria was given for the differential 

equation (1.2) but the condition considered there, 

is slightly stronger than ours. 

3- The functional equation considered by Grace and Lalli 121 is much different from 

ours. 
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