Mansoura University
Faculty of Engineering
Dept. of Power Mech. Eng.
Course Title: Fluid Mechanics 1
Course Code: MPE4123

$1^{\text {st }}$ year Mech. May 2012 Exam Type: Final
Time: 3 Hours
Full Mark: 100

Answer all the following questions.

Question (1)

a- If water occupies $1 \mathrm{~m}^{3}$ at 1 atm . pressure, estimate the pressure required to reduce its volume by 5 percent. $\left(\mathrm{K}=2.06 \times 10^{9} \mathrm{~Pa}\right)$
[4 Marks]
b - A disk of radius R rotates at angular velocity inside a disk-shaped container filled with oil of viscosity μ as shown in Fig.1. Assuming a linear velocity profile and neglecting shear stress on the outer disk edges, derive a formula for the viscous torque on the disk. [8Marks]
c- In the the closed tank in Fig. 2 the pressure at point A is 95 kPa absolute, what is the absolute pressure at point B in kPa ?
[8 Marks]

Question (2)-

a- The dam in Fig. 3 is a quarter circle 50 m wide into the paper. Determine the horizontal and vertical components of the hydrostatic force against the dam and the point CP where the resultant strikes the dam.
b - Consider a wooden cylinder $(\mathrm{SG}=0.6) 1 \mathrm{~m}$ in diameter and 0.8 m long. Would this cylinder be stable if placed to float with its axis vertical in oil $(\mathrm{SG}=0.8)$? [10 Marks]

Question (3)

a- The tank of liquid in Fig. 4 accelerates to the right with the fluid in rigid-body motion. (i) Compute a_{x} in $\mathrm{m} / \mathrm{s}^{2}$ (ii) Determine the gage pressure at point A if the fluid is water.
b- An idealized velocity field is given by the formula $\mathbf{V}=4 t x \mathbf{i}-2 t^{2} y \mathbf{j}-4 x z \mathbf{k}$
Is this flow field steady or unsteady? Is it two- or three-dimensional? At the point $(x, y, z)=$ $(-1,1,0)$, compute the acceleration vector. Is it satisfies the continuity

Question (4)

a- Air flows through a smooth contraction in a pipe (Fig. 5) with negligible friction losses (the pipe diameters are $D_{1}=0.3 \mathrm{~m}$ and $D_{2}=0.15 \mathrm{~m}$). The pressure difference between the two sections is measured by a water manometer. If the height difference $\Delta \mathrm{h}$ measured between the two vertical tubes is 0.2 m , calculate the mass flow rate (assume the air density is $1.22 \mathrm{~kg} / \mathrm{m}^{3}$).
[12 Marks]
b- Water flows through the circular nozzle shown in the Fig. 6 at a rate of $0.3 \mathrm{~m}^{3} / \mathrm{s}$). The diameter at section 1 is 0.3 m and at section 2 is 0.1 m . Calculate the velocities at stations 1 and 2 and the force acting on the flange. Assume that the pressure at station 1 inside the nozzle is $700,000 \mathrm{~N} / \mathrm{m}^{2}$ and is zero at station 2 .

Question (5)

Water is flowing from the taller container through a long pipe that has two segments, as shown in the Fig.7. The inner diameter of the thicker pipe is 6 cm and its length is 30 m , whereas the length of the thinner pipe is 20 m and its inner diameter is 4 cm . The loss that is due to the transition between the two pipe diameters is $K=0.2$ and the friction factor for both pipes is $f=0.03$. Calculate the flow rate between the two containers when $z_{1}=3 \mathrm{~m}$ and $z_{2}=5$ m.
[16 Marks]
مع أطيب التمنيات
Prof.Dr. Hassan Mansour

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6
Fig. 7

