۱. د. معرطفی صالح د. انهاب مصطفی ربارمن + (۱) اعدادی کھسے

Mansoura University Faculty of Engineering Eng. Math. and Phys. Dept.	Final First Term Exam. 2010-2011	Mathematics (1). تخففات Time allowed: 3 Hours.
فاضل من الجهة الأخرى	عدى جهتى ورقّة الإجابة و النا	من فضلك إبدأ حل الجبر من إد

Algebra

Question.1 [35 marks]

- (a) Use De Moivre's theorem to solve the equation $z^3 + 8 = 0$.
- (b) Use mathematical induction to prove that $5^n 2^n$ is divisible by 3 for any positive reger n.
- (c) Decompose the fraction $\frac{2x+3}{(x^2-1)(x^2+1)}$ into its partial fractions.
- (d) Find the roots of the equation $x^4 x^3 + 3x^2 9x 54 = 0$.

Question.2 [35 marks]

- (a) Prove that the product of orthogonal matrices is orthogonal.
- (b) If A is 3*3 matrix and $\det A = 5$, find:

(i)
$$\det(2A)$$
 (ii) $\det A^{-1}$

(e) If
$$A = \begin{bmatrix} -1 & 3 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 \\ 1 & 0 \\ -3 & -1 \end{bmatrix}$ evaluate:

(i)
$$AB$$
 (ii) $2A^T$ (iii) A^{-1} .

(d) Using (c), solve the system
$$AX + 2M = N$$
, where $M = \begin{bmatrix} -2 \\ 3 \\ 3 \end{bmatrix}$ and $N = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.

Answer the following questions [Full mark 130 points]

1. (a) Solve for x

(i)
$$\ln(x+2) = \ln(x-7) + \ln 4$$
, (ii) $\pi = 2\sin^{-1}(x+4)$ [4+4 points]

(iii)
$$\frac{x^2 - 4x + 3}{x + 2} \ge 0$$
 [4 points]

(b) If
$$f(x) = \frac{1}{x}$$
 and $g(x) = \sin x$, compute $(g \circ f)(\frac{2}{\pi})$. [4 points]

(i)
$$\lim_{x \to 0} (3\csc x - \cot x)$$
, [4 points]

(ii)
$$\lim_{x \to \infty} \frac{\sinh x}{3 + \tan^{-1} x}$$
 [4 points]

(iii)
$$\lim_{x \to 0^+} (1 + \sin 3x)^{\csc x}$$
 [4 points]

(d) Find the domain, range and discuss the symmetry of
$$y = \tanh x$$
.
Sketch the graph of this function and then prove that $\tanh(\ln x) = \frac{x^2 - 1}{x^2 + 1}$. [7 points]

2. (a) Find $\frac{dy}{dx}$ for each of the following functions

(i)
$$y = \sec^{-1}(\cosh 5x) + \operatorname{csch}^{-1}(3x)$$
 [6 points]

(ii)
$$(\cos x)^y + \operatorname{sech} y = \cos^{-1} x + \log_3(x^4 + 1)$$
 [8 points]
(iii) $y = a(1 - \cos t), \quad x = a(t - \sin t)$ [4 points]

(b) If $y = \sinh(m \sinh^{-1} x)$, prove that

$$(1+x^2)y'' + xy' - m^2y = 0,$$
 [5 points]

hence, or otherwise, deduce that

$$(1+x^2)y^{(n+2)}+(2n+1)xy^{(n+1)}+(n^2-m^2)y^{(n)}=0$$
. [5 points]

(c) Find the Taylor's expansion of order 4 of the function $f(x) = \sin x$ about the point $x = \pi/3$ and hence evaluate $\cos 61^\circ$ from this expansion.

[7 points]