TURBULENT FLOW BETWEEN CONCENTRIC ROTATING CYLINDERS

M. S. Mohamed
Meckanical Power Engincering Department, Faculty of Engineering, Mansoura Uviversity.

Abstract

الـنلاصـ

Abstract

: The turbulent 6ow betweev concentric cylinders both rotating in the same or opposite directions is iovestigated theoreticaily. A finite difference scheme is developed to solve the boundary layer equations coverning the flow. A two-equation model of turbulence was employed in this study. Modifications have been wade to the model to take into accourt the effect of rotation of the cylinders and the existing of the wall. The effect of changing the radius ratio, axial Reynolds number aod angular velocity ratio on the hydraulic friction head loss of air is studied. Distributions for axial mean velocity, tangeotial mcan velocity, turbulence intensity and sliear stress in both the entrance region and fully developed region are predicted, aiso. Cosmparisoos of the present numerical results with other investigators results show good agreement.

1.INTRODUCTION:

Turbulent flow between concentric cyltiders (one of them rotating) occurs in various rotating machinery such as joumal bearing, axial flow between the stationary and rotating parts of turbo-machines and the flow in the rising line of deep well purmps. One of the important examples is the cooling system of gas turbine rotor, where some portion of the cooling air can be supplied to the rotor area through an annuiar duct, forned by two coaxial cyliuders, with the inner cylinder rotating. Flow in such system can be characterized by very high Reynoids oumber ($\mathrm{R}_{\mathrm{e}} \approx 10^{6}$). Most of papers dealing with this type of flow analyze the problem in the range of low or moderate R_{e}, in at effort to explain the nature of Tayior vortices and to quantify their complex effects. There are very few data, botb experimental and theoretical, from the rang of high R_{e}.

The papers of Yamada [1,2] are dealing with high rotational R_{e} and axial throughflow. Kaye and Elgar [3] used the axial Reynolds number (R_{e}) and Taylor number as criteria, characterizing the flow, to distinguish four distinct flow regimes. These regimes are laminar
flow, laminar flow with Taylor vortices, turbulent flow and turbutent flow with Taylor vortices. The boundaries of the regimes swere conveniently represented by a plot of the axial Reynoids number versus Taylor number. The experiments of Kaye and Elgar [3] were extended to higher Reynolds and Tayior nuinbers by Kostcrin, Koshmanow and Finatyew, and are quoted in [4].

Mansour [5] investigated theoretically the hydraulic resistance in an annulus of concentric rotating cylinders. The axial and tangential velocity distributious were introduced. He assumed that the annulus is long enough and a uniform purely developed laminar flow is considered. He found that rotation affects the friction coefficient as well as the axiat and tangential velocity distributions. He concluded that the friction coefficient for an annulus of rotating walls is higher than that for stationary walls. Also, the friction coefficient ratio increases with the increase of both speed ratio ($\omega \mathrm{r} / \mathrm{u}$) and the relative angular velocity ratio $\left(\omega_{1} / \omega_{2}\right)$.

Boubnov et ai $[6]$ investigated the stability conditions cf the flow between two concentric cylinders with the inner one rotating. They employed a fluid with axial, stable linear density stratification. They used a gap of radius ratio 0.275. Experiments show that stratification bas stabilizing effect on the flow with the critical Reynolds oumber depending on the buoyancy frequency of the fluid. The selected vertical wave length at onset of instability is reduced by stratification effect and is for the geometry considered only about half the gap width. They devided the flow regimes into three regimes depending on both Reynolds number and Froud number.

Although the stabiiity of supercritical circular couctte flow has been studied extensively, results for the velocity field of the flow are limited. Recently, the azimuthal velocity profiles for the Taylor vortex, wavy vortex and turbulent Taylor vortex flow in the annuius between a rotating inner cylinder and a fixed outer cylinder with fixed end conditions were measured using laser Doppler velocimetry by Wereley and Lueptow [7]. They measured the azimutbal velocity at several points distributed at both radial and axial directions for several Reynolds number. Increasing Reynolds number indicated that: the magnitude of the radial gradient of azimuthal velocity near both cylinders increases and the radial outfiow region between pairs of vortices becomes increasingly jet-like.

The present investigation is concemed with the theoretical study of the development of turbulent flow in concentric annulus at different conditions such as rotating the inner and outer cylinders in the same or opposite directions at different velocity ratios. Steady axial flow is assumed to exist under a constant axial pressure gradient. The aim of this study is to develop a finite difference scheme using the available turbulence modets to predict the Now patterns and its effect on the hydraulic loss coefficient.

2.GOVERNING EQUATIONS:

Assuming that the fluid has constant plysical properties and the flow is steady axisymenetric with the absence of body forces. The equations governing the fluid motion of an annulus with rotating cylinders and axial throughflow, in cylindrical polar coordinates, are:
r-montenthm equation:

$$
\begin{equation*}
V, \frac{\partial V_{r}}{\partial r}-\frac{V_{i}^{2}}{r}+V, \frac{\partial V_{r}}{\partial z}=-\frac{l}{\rho} \frac{\partial \rho}{\partial r}+v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{r}}{\partial r}\right)-\frac{V_{r}}{r^{2}}+\frac{\partial^{2} V_{r}}{\partial z^{2}}\right] \tag{1}
\end{equation*}
$$

θ-momentum equatton:

$$
\begin{equation*}
V, \frac{\partial V_{0}}{\partial r}+\frac{V_{r} V_{0}}{r}+V, \frac{\partial V_{0}}{\partial z}=v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{0}}{\partial r}\right)-\frac{V_{0}}{r^{2}}+\frac{\partial^{2} V_{0}}{\partial z^{2}}\right] \tag{2}
\end{equation*}
$$

z-momentum equation:

$$
\begin{equation*}
V_{r}, \frac{\partial V_{i}}{\partial r}+V_{t} \frac{\partial V_{1}}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial z}+v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{1}}{\partial r}\right)+\frac{\partial^{2} V_{t}}{\partial z^{2}}\right] \tag{3}
\end{equation*}
$$

Continuity equation:

$$
\begin{equation*}
\frac{\partial\left(r V_{r}\right)}{\partial z}+\frac{\partial\left(r V_{r}\right)}{\partial r}=0 \tag{4}
\end{equation*}
$$

Scalar property ϕ :
The transport equation of the scaiar quadtities: turbulent kinetic energy k, its dissipation rate ε and the Reynolds stresses in a general from is:

$$
\begin{equation*}
\rho \frac{\partial}{\partial z}\left(r V_{: *}\right)+\rho \frac{\partial}{\partial r}\left(r V_{\phi}\right)=-\frac{\partial}{\partial r}\left(r J_{\hbar}\right)+P_{\theta}-D_{\psi} \tag{5}
\end{equation*}
$$

where ϕ is the required scalar quantity. J_{*} is the flux of the scalar property ϕ, P_{ϕ} is the generation rate of ϕ and D_{4} is the dissipation rate of ϕ. The velocity components (V_{2}, V_{r} and V_{θ}) and the scalar property ϕ represent time average values.

Applying the well known Prandtl boundary layer assumptions and check the order of magnitude of each term of the above equations [8], equations (1), (2) and (3), which represent the momentum equations for the flow in the entry region, may be reduced to the following simplified boundary layer equations:

$$
\begin{gather*}
\rho \frac{V_{0}^{2}}{r}=\frac{\partial P}{\partial r} \tag{6}\\
V_{r} \frac{\partial V_{0}}{\partial r}+V_{1} \frac{\partial V_{\theta}}{\partial z}=\frac{v}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{0}}{\partial r}\right) \tag{7}\\
V_{r} \frac{\partial V_{1}}{\partial r}+V_{1} \frac{\partial V_{i}}{\partial z}=-\frac{l}{\rho} \frac{\partial P}{\partial z}+v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{1}}{\partial r}\right)+\frac{\partial^{2} V_{1}}{\partial z^{2}}\right] \tag{8}
\end{gather*}
$$

The fully developed flow, which occurs if the annulus is sufficiently long, provides an analytical check on the finite difference solution to be obtained. After passing the initial section, all derivatives in the axial direction become zero, except the constant pressure gradient $(\partial / \partial z)=0$. Additionally, there are no variation in the tangential direction $(\partial / \partial \theta)=0$, because of the axial symmetry of the system. With these simplifications and the assumptions of negligible dissipation rate and no body forces, except the centrifugal force, the equations of conservation for an incompressible turbulent flow will take the form:
$A_{j}^{0}=(D+(\mathrm{C} / 2))_{,}^{D} . \quad A_{j}^{D}=A_{j}^{U}+A_{j}^{D} .+A_{j}^{D}$.
$B_{1}=\int_{X}^{0} \int_{\eta}^{\eta} r \delta S_{4} d z d \eta=\overline{s_{4}}$ Volum. \quad (Volume $\left.=r \delta \nabla z \nabla \eta\right)$
where $\quad \overrightarrow{s_{\phi}}=$ Average source (sink) vaiue over the control volume.

Axis of symmetry
Figure (i) Mesh network and control volumes for finite difference representation

Integrating the continuity equation over the V_{r}-control volume gives:

$$
\begin{equation*}
\left[\left(\rho r \delta V_{1} \nabla \eta\right)_{j}^{D}-\left(\rho r \delta V_{r} \nabla \eta\right)_{,}^{U}\right]+\left[\rho r\left(V_{\theta}-G V_{1}\right) \nabla_{z}\right]_{*}-\left[\rho r\left(V_{\theta}-G V_{1}\right) \nabla_{z}\right]=0 \ldots \ldots \tag{19}
\end{equation*}
$$

$\left(V_{\theta}\right)_{+}$equals to $\left(V_{\theta}\right)_{l+l}$ and V. equals to $\left(V_{\theta}\right)_{J \cdot l}$.
The equation of V_{z} can be obtained by replacing ϕ by V_{z} in equation (18), as follows:

$$
\begin{equation*}
A_{j}^{D}\left(V_{3}\right)_{j}^{D}=A_{j}^{U}\left(V_{1}\right)_{j}^{U}+A_{j .}^{D}\left(V_{1}\right)_{\mu, 1}^{D}+A_{j .}^{D}\left(V_{1}\right)_{j, 1}^{D}+B_{j} \tag{20}
\end{equation*}
$$

where the constants A are coefficients of integration, superscript U denotes upstream conditions while D denotes dowastream conditions and B_{J} is:

$$
B_{j}=-(r \delta)_{s}^{n} \nabla z \nabla \eta(\overline{d P} / d z\}
$$

In confined flow ($\overline{d P} / d z$) is not known. An estimated pressure field $(\overline{d P} / d z)^{*}$ is used with the transport equation of V_{z}-momentum to obtain a preliminary V_{z}-velocity distribution, say $\left(\left(V_{1}\right)_{,}^{D}\right)^{*}$. This velocity field satisfics the momentum eqruation but it does not satisfy the
continuity equation. The pressure and velocity are then corrected in the following way [13]: To estimate the mass-flux imbalance at each node, a veiocity cortection $\left((V,)_{,}^{D}\right)^{\prime}$ was added to $\left((V,)_{,}^{o}\right)^{*}$ in order to satisfy the continuity equation. All approximate relation between $\left((V,)_{,}^{n}\right)^{\prime}$ and the corresponding pressure correction $(\overline{d P} / d z)$ can be obtained Grom u-momentum equation. Solving both equations will lead to the pressure and velocity corrections, $\left(\left(\nu_{1}\right)^{n}\right)^{\prime}$ and $(\overline{d \bar{P}} / d z)^{\prime}$ respectively. Better approximations for the pressure gradient and the velocity field can be obtained as:

$$
\begin{equation*}
\overline{d P} / d z=(\overline{d P} / d z)^{\bullet}+(\overline{d P} / d z)^{\prime} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left(V_{1}\right)_{\lambda}^{D}=\left(\left(V_{1}\right)_{j}^{D}\right)^{*}+\left(\left(V_{2}\right)_{j}^{D}\right)^{\prime} \tag{22}
\end{equation*}
$$

The new velocity field satisfied the continuity equation exactly. But, the substitution with the new pressure gradient in the V_{z}-momentum equation will lead to a velocity field which does not satisfy continuity equatioin exaczly. An iterative procedure is needed before marching downstream to the next cross-stream plane until the difference is less than 0.3%.

By the same manner, equation of V_{θ} is:

$$
\begin{equation*}
A_{j y}^{0}\left(V_{0}\right)_{j}^{D}=A_{y, y}^{u}\left(V_{0}\right)_{j}^{u}+A_{j, V}^{D}\left(V_{0}\right)_{j, 1}^{D}+A_{J, V}^{D}\left(V_{0}\right)_{J, 1}^{D}+B_{\jmath y} \tag{23}
\end{equation*}
$$

where

$$
B_{y y}=-(r \delta)_{j}^{n} \nabla_{z} \nabla_{\eta}\left(p_{j-1}^{o}-p_{j}^{o}\right)
$$

A-coefficients and B-coefficient have the subscript V_{θ} because they are obtained from integration of equation (5) over the V_{θ}-control volume. The pressure fluctuation P_{j}^{0} is unknown. The same procedure in finding the pressure gradient and V_{z}-feld is foliowed also to find the pressure fluctuation and the V_{θ}-field from V_{θ}-momentum equation. It gives:

$$
\begin{array}{r}
P_{J}^{D}=\left(P_{J}^{p}\right)^{*}+\left(P_{J}^{D}\right)^{\prime} \ldots \ldots \\
\left(V_{0}\right)_{J}^{n}=\left(\left(V_{0}\right)_{J}^{D}\right)^{*}+\left(\left(V_{0}\right)_{J}^{D}\right)^{\prime} \tag{25}
\end{array}
$$

4.I. Initial and Boundary Conditions:

Uniform axial velocity profile is assumed at the indet of the annulus and equais to the mean velocity. The radial and tangential veiocity profiles are assumed to be zero. The initial distribution of turbulent kinetic energy k and its dissipation rate ε are assumed be to unjform and equal to that values given by Launder and Spalding [14] for turbulent pipe flows. All velocity components along the inner and outer radiuses are assumed to be zero, expect for the tangential mean velocity at the wall of the inner and outer cylinders. For an annulus having an inner cylinder of radius r_{j} and rotates with angular velocity ω_{1} while its outer cyliuder is of radius r_{2} and rotates, also, with angular velocity ω_{2}, the flow is subjected to the following boundary conditions:
at inlet section $(z=0)$ and $r_{l}<r<r_{2}, V, \bar{V}_{1}$ (flat profile at entrance)
$k=0.003 V_{1}^{2}, \varepsilon=C_{\mu} k^{2 / 3} /\left(0.03 r_{h}\right)$ and $P=P_{0}=-V_{1}^{2} / 2$
at the walls $z \geq 0$ and $r=r_{1} \quad V_{r}=V_{z}=0$ and $V_{\theta}=\omega_{1} r_{l}$
$z \geq 0 \quad$ and $r=r_{2} \quad V_{r}=V_{z}=0$ and $\nu_{0}=\omega_{1} r_{2}$
full)' developed fow $\partial / \partial \mathrm{z}=0.0$ except $(\partial P / \partial \mathrm{z} \neq 0.0)$

4.2.Near Wall Treatment :

The $k-\varepsilon$ is valid only in bigh Reynolds number flows far from the viscous flow near the wall. Therefore, special treatment is needed to take into account the effect of fluid viscosity on turbulence, particularly, wall shear stress τ_{w}, the production of turbulence exergy k and its dissipation ε near the wall. The procedure is based on the analytical solutions of the thin Coutte-flow type region which exteods from $r^{+} \approx 30$ to the wall, where $\left(r^{+}=r \tau_{w} / v\right)$. This procedure is biased on the assumption that the Log-law:

$$
\begin{equation*}
\frac{V_{0}}{\left(V_{0}\right)_{t}}=\frac{l}{x} \ln \left(E_{r^{*}}\right) \tag{26}
\end{equation*}
$$

is valid over the uniform shear stress region $\left(0<r^{+}<r_{p}^{-}\right)$where
$(V \theta)_{s}=\sqrt{\tau_{w} / \rho}, \kappa=0.42$ (Von Karman constant) and $E=9.0$ for smootb walls.
Using the simplification [11]

$$
\tau_{\mathrm{p}}\left(=\tau_{\mathrm{w}}\right)=\rho C_{\mu}^{I / 2} k_{P}
$$

to caiculate $\left(V_{B}\right)_{P}$ the wall sinear stress τ_{w} can be obtained as:

$$
\begin{gather*}
\tau_{\nu}=\rho \kappa C_{\mu}^{\prime \prime /} k_{p}^{\prime \prime 2} \mid\left(\left(V_{0}\right)_{\mu}-\left(V_{n}\right)_{r} \mathbb{\|} \mid \ln \left(E_{r}^{+}\right)\right. \tag{27}\\
r_{p}^{\dot{p}}=\rho r_{p} C_{\mu}^{\prime \prime \mu} k_{p}^{\prime \prime 2} / \mu \tag{28}
\end{gather*}
$$

subscripts p and w denotes the node p and the wall conditions, respectively. In equation (27), the quantity $\left.\left[\left(V_{\theta}\right)_{w}-V_{\theta}\right)_{P}\right]$ is employed to account for the rotation of walls.

The production of turbulence near the wall can be obtained from transport equation k. It was modified in order to take into account the effect of wall sbear stress τ_{w}. From equation (16) the term, $-\overline{v_{s} v_{r}}\left(\partial V_{r} / \partial r\right)$, is the dominated part of P_{k} and is denoted as P_{k}^{\prime}.

$$
P_{i}^{\dot{i}}=-\overline{v_{r} V_{r}} \frac{\partial V_{2}}{\partial r}=\frac{\tau_{m}}{\rho} \frac{\partial V_{z}}{\partial r}=\frac{\tau_{m}}{\rho} \frac{\left(V_{0}\right)_{r}}{\kappa r}
$$

therefore,

$$
\begin{equation*}
P_{1}^{\prime}=\tau_{\sim}^{3 / 2} / \rho^{3 / 2} \kappa r_{1} \tag{29}
\end{equation*}
$$

The dissipation rate near the wall, ε, was obtained from the assumption that the length scale of turbulence is $L=k^{3 / 2} / \varepsilon$ whijch is reiated to the mixing length as $L=C_{\mathrm{\mu}}^{\text {j/s }} \mathrm{K} r_{\text {, }}$. thus,

$$
\begin{equation*}
\varepsilon^{\prime}=C_{\mu}^{\prime / 4} k_{p}^{3 / 2} / \mathrm{kr} . \tag{30}
\end{equation*}
$$

5. RESULTS AND DISCUSSION:

The axial air flow in four gaps, at radius ratio of $0.333,0.5,0.6$ and 0.75 , rotating at wide range of angular velocity ratios is used in this study. Positive and negative angular velocity ratios as well as inner cylinder rotating only and outer cylinder rotating only were rivestigated to give a range of flow Reynolds number $6.62 \times 10^{5} \leq R_{e} \leq 16 \times 10^{6}$ and rotational Reynolds numbers $2.43 \times 10^{3} \leq R_{0} \leq 48 \times 10^{4}$. The effect of these parameters on the fow
pattern and friction head loss was studied. In all numerical computations a non-uniform grid in the radial direction is employed depending on the axial velocity gradient. Tweuty nodes in the radial direction were used to give grid-independent solution for this flow. Five itcration were found to give a convergiog solution.

5.1. Lass Coefficient in Rotating Concentric Pipes:

In all the test runs axial Reynolds number R_{e} was higher than 10^{5}, so the flow is curbulent when both pipes are beld stationary. Therefore, for $R_{\theta}=0$, the friction head loss coefficient is equal that value calculated from Blasius equation for smooth pipes $f=0.3164 R^{.03 s}$.

When rotation begins, it is obvious that $\lambda=\left(\tau_{r 2}\right)_{w} /(1 / 2) V^{2}$, deviates graduaily frow f. Rotational hydraulic friction head loss λ increases with increasing the aspect ratio (L / b) and reaches a constant value at $/ / b=50$.

Figure (1) shows the variation of the friction coefficient ratic $\lambda f f$ with radius ratio at different angular speed ratios α for aspect ratio ($/ / b=50.0$). The figure indicated that increasing the angular velocity ratio increases the friction coefficient ratio (R_{θ} / R_{e} increases). For constapt angular velocity ratio and constant axial velocity $V_{z}=50(\mathrm{n} / \mathrm{s})$, it is clear that λ / f increases with increasing the radius ratio figure (1-a). For the case when outer cylinder is rotating only ($\omega_{1}=0$), izereasing the radjus ratio has an opposite effect on λ / f where it decreases with increasing the radius ratio as shown in figure ($1-\mathrm{b}$). This can be explained as, increasing the radius ratio decreases the tangential velocity gradient which in turn reduces the friction coefficient ratio. The figure shows that the friction coefficient ratio is greater than unity ($\lambda / f \geq 1$).

The change of the friction coefficient ratio $N f$ with axial Reynolds number R_{e} in a gap at radius ratio $=0.5$ for different angular velocity ratios is presented in figure (2). Figure (2-a) shows that for constant angular velocity ratio, λ / f increases with increasing $R_{e}\left(R_{\theta} / R_{e}\right.$ decreases as R_{θ} is coostant). For outer cylinder rotatiog only ($\omega_{1}=0$) shown in figure (2b), λ / f increases with increasing the angular velocity ω_{2} also, while it decreases with increasing the R_{e} (or decreasing R_{g} / R_{e}).

The variation of the friction coefficient ratio with the rotational speed ratio be explained by examining the velocity profiles in the gap of the rotating cylinders.

5.2. Mean Velocity Distribution and Turbulence Intensity:

The development of the flow parameters with the downstream distance for a gap having radius ratio 0.75 ; rotating at angular speed ratios $\alpha=2$, outer cylinder rotating only, inner cylinder rotating only and $\alpha=4$; are presented in figures (3 to 6) respectively. Comparison between the flow parameters for stationary (dashed lines) and rotating cylinders (solid lines) are presented. The dimensionless meao axial and tangentia! velocity profiles [V_{z} $\left\langle\left(V_{z}\right)_{\max }\right.$ and $\left.V_{\theta} /\left(V_{\theta}\right)_{\text {max }}\right]$, turbulence intensity profiles $\sqrt{\overline{V_{r}^{j}}} /\left(V_{z}\right)_{\max }$ and shear stress distribution $\overrightarrow{v_{r} v_{r} /}\left(V_{t}\right)_{\max }^{2}$ in the gap verses the dimensionless radial distance $\left(r_{r-r}\right) /\left(r_{2}-r_{f}\right)$ are predicted for aspect ratio $/ / b=50$. Seven downstream stations $(z / L=0.04,0.12,0.3$, $0.45,0.6,0.75$ and 1.0 respectively) for a flow at axial Reynolds number $R_{e}=6.62 \times 10^{5}$ ivere chosen. The dimensionless axiai mean velocity $V_{:} /\left(V_{z}\right)_{\max }$ was found to be self-
similar after $z / L=50$. The velocity profiles $V_{z} /\left(V_{z}\right)_{\max }$ change along the annulus, as shown in the figures, for various values of R_{g}. The axial opean velocity profiles remain flat up to distance $7 \mathrm{~J},=0.30$. As z / L increases, the velocity profiles deform gradually, due to a stabilizing effect of the centrifugal force of the swirling flow. Lavan et ai [15] indicated in their theoretical work that reverse flow is to be expected near the wall at the entrance region of the pipe, for large R_{g}. At $z / L=50$ and more downstream, the velocity profiles become approximately independent of the axial distance from the inlet. For a gap at constant radius ratio, the comparison between the mean axial velocity profiles at deferent angular velocity ratios indicated that the maximum velocity tends to move far from the axis of rotation as the angular velocity ratio increases while it is not affected by increasing axial Reynolds number R_{e}, as shown in figure (8-a). For constant angular velocity ratio, increasing the radius ratio tends to shift the maximum axial velocity towards the axis of rotation as sbown in figure ($9-\mathrm{a}$), which agrees with Mansour [5] for laminar flow.

Figure (7) shows the response surface for the development of the dimensionless tangential mean velocity $V_{\theta} /\left(V_{\theta}\right)_{m a x}$ for different angulai velocity ratios for a gap at radius ratio 0.6 and axial Reynolds number $R_{e}=6.62 \times 10^{5}$.

When both cylinders are rotating at opposite directions at $\omega_{1} / \omega_{2}=-2$ and axial Reynolds number $R_{e}=6.62 \times 10^{5}$, the flow at every point is turbulent. Figure (3-b) shows that, the tangential mean velocity distribution near both cylinder walls is sharply inclined, whereas it is much less than that in the middle of the gap. As R_{θ} is increased, this trend is morenoticed. The turbulence inteasity $\sqrt{v_{t}^{2}} /\left(V_{\mathrm{z}}\right)_{\text {max }}$ figure (3-c), shows a peak pear both cylinder walls. It was found that, this peak value increases as R_{θ} grows larger. Yamada [16\} noticed that, once R_{θ} exceeds 5040 , the fluid is divided into two distinct regions of lacoinar and turbulent flows. This is the formation of a so-called spiral turbulence in which a laminar flow portion and turbulent Dow portion coexist like a double-screw pattern. He aiso noticed that, when both cylinders rotate in opposite directions, Taylor vortices and spiral turbulence develop simultaneously or one after the other, depeading upon the rotational Reynolds number R_{θ}, and they coexist in the gap.

When the outer cylinder is rotating at $R_{\theta}=7274$ while the inner one is stationary ($\omega_{1}=0$), the turbuience intensity $\sqrt{\overline{v_{r}^{2}}} /\left(V_{i}^{\prime}\right)_{\text {max }}$, sharply increases as shown in figure (4-c) and the velocity gradient (v) increases slightly, figure (4-b). Yamada [16], found the same phenomenon in bis experiment, and he noticed that the flow becomes spiral turbulence.

Figure (5) shows an axial flow at $R_{\mathrm{e}}=6.62 \times 10$ with the inner cylinder rotating at $R_{\theta}=2425$ while the outer cylinder is stationary $\left(\omega_{2}=0\right)$. The tangential mean velocity profie, figure $(5-b)$, shows a flat portion, in the meddle, up to $z / L=0.6$. The velocity distribution shows self-similarity case after $/ / \mathrm{b}=50$. The turbulence intensity $\sqrt{v_{2}^{2}} /\left(V_{z}\right)_{\max }$, figure $(5-c)$, has a peak value near the inner cylinder and the axis of the flow tends to move towards the outer cylinder. This peak value decreases with increasing both the radius ratio and the axial Reynolds number R_{e}. These results agree well with that obtained with El-shaarawi et al [17] for turbulent fiow in an annulus with inaer cylinder rotation.

When the outer cylinder and the inner cylisder are rotating in the same direction ($\alpha=\omega_{1} / \omega_{2}=$ $4)$, shown in figure ($6-b$), the tangential mean velocity profile indicated two peak values near the rotating wails with bigh velocity gradient. The velocity gradient reduces as the flow goes downstream. The turbulence intensity, figure $(6-c)$, increases gradually from the outer to the inser cylinder and it has a steep change near the inner one. In the fully
developed region, the flow is stabilized and Yamada [16] found that, the flow is lamiaar even at $R_{\theta}=5000$, because the laminar flow regime increases up to a high R_{θ} as the angular velocity ratio approaches unity.

5.3. Shearing Stress:

The dimensionless sbear stress, $\overline{v_{t}} v_{r} /\left(V_{r}\right)_{\text {max }}^{2}$, jocreases as the flow goes down-stream as shown in figure (3-d). It decreases with increasing both the radius ratio and axial Reynolds number, figures (8 and 9). The shear stress was found to be reduced as the rotational Reynolds oumber increases. In the case of outer cylinder rotating while tbe inner cylinder is fixed, an opposite trend is obtained.

6. CONCLUSIONS:

Nonswirling turbulent axial flow between two concentric totating cylinders was studied numerically. The flow pattern and the hydraulic resistance in the gap were investigated in the ranges of flow axial Reynolds number $6.62 \times 10^{5} \leq R_{e} \leq 5.16 \times 10^{6}$ and rotational Reynolds numbers $2.43 \times 10^{3} \leq R_{\theta} \leq 7.48 \times 10^{4}$. The flow parameters in both entrance and fully developed regions were predicted.

The results can be concluded in the following points:

1) For constant axial Reynolds number R_{e}, the bydraulic friction coefficient, λ / f, in the initial region is function the rotational Reynolds number R_{6} and the downstream distance z / L while after $\mathrm{z} / \mathrm{L}>50$, it depeads on the rotational Reynolds number R_{θ}, only.
2) In the fully developed region, the hydraulic friction coefficient increases with increasing (R_{6} / R_{e}). For the same the angular velocity ratio, it increases with increasing both (R_{θ} $/ R_{\mathrm{e}}$) and radius ratio r_{t} / r_{2}. It is generally less tban unity except for the case of the cylinders rotating in opposite directions.
3) In the case of outer cylinder rotating while the inner one is stationary; the friction coefficient ratio, λ / f, increases with increasing the angular velocity of the outer cyimder ω_{2}. For constant ω_{2}, the swirling velocity given to the flow by cotating the cylioder tends to shift the flow gradually to laminar flow which in tura reduces the friction bead loss coefficient ratio. Reducing the radius ratio increase the rotating area which in turn allows the flow more to reach laminar flow case that decreases λ / f. The friction coefficient ratio, λ / f, is generally greater than unity.
4) The axial maximum mean velocity tends to shit towards the axis of rotation as the radius ratio imcrease while there is no effect of increasing the axial Reynolds number R_{e} on the location of the axial maximurn velocity.
5) The turbulence intensity and sbear stress reduce with iocreasing both the axial Reynolds number and sadius ratio. The effect of increasiog the rotational Reyoolds number is to reduce both turbulence intensity and shear stress while they increase with increasing ω_{2} in the case of stationary inner cylinder.

7. NOMENCLATURE:

b	Gap width $=r_{2}-r_{1}$.
$C_{\varepsilon 1}, C_{\varepsilon 2}$	Constants in the $k-\varepsilon$ model.
$C_{\varepsilon 3}$	Constant for the additional dissipation term.
C_{μ}	Eddy viscosity coefficient.
f	Hydraulic friction coefficient for stationary cylinder.

k	Turbulent kinetic energy.
L	Pipe length.
P_{k}	Production term in the k transport equation.
R_{e}	Axial Reynolds number $=2 \mathrm{Ub} / \mathrm{v}$.
R_{θ}	Rotational Reynolds nurober $\left.=\mid \omega_{2}-\omega_{1}\right)\left(\left(r_{2}^{2}-r_{1}^{2}\right) / 20\right.$.
r	Arbitrary radius in the gap.
r_{h}	Hydraulic radius $=2\left(r_{2}, r_{t}\right)=2 b$.
r_{1}, r_{2}	Radius of inner and outer cylinder respectively.
$M=r_{i} / r_{2}$	Radius ratio.
r, θ, z	Cyinodrical coordinate system.
T_{k}, T_{ε}	Diffusion term in k transport equation and ε transport equation respectively.
V_{2}, V_{8}, V_{r}	Axial, tangential and radial mean velocity respectively.
v_{r}, v_{8}, v_{r}	Axial, tangential and radial turbulence fluctuation component respectively.
$v_{t} v_{\text {, }}$	Reynolds shear stress.
ε	Dissipation rate of the turbulent kinetic energy k.
ω^{ω}	A.agular velocity.
ρ	Fluid density.
μ	'Fluid dynamic viscosity.
v	Fluid kinematic viscosity.
v_{t}	Turbulent eddy viscosity.
$\sigma_{k, t}, \sigma_{\text {E,t }}$	Turbuleot Prandti number in k and ε transport equations.
τ	Shear stress.
α	Angular velocity ratio $=\omega_{1} / \omega_{2}$.
λ	Rotational bydraulic friction coefficient.

8. REFERENCES:

1-Yamada; Y., "Resistance of a Flow Through an Annulus with an Inner Rotating Cylinder," Bulletin of J.S.M.E., Vol. S, No. 18, 1962, PP. 302-310.

2-Yamada, Y., "Torque Resistance of a Flow Between Rotating Coaxial Cyliuders Having Axial Flow," Bulletin of J.S.M.E., Vol. S, No. 20, 1962, PP. 634-642.

3-Kaye, J., and Elgar, E. C., "Modes of Adiabatic and Diabetic Fluid Flow in an Joner Rotating Cylinder," ASME Transactions, Vol. 80, 1958, PP 753-765.

4-Beranek, K, and Streda, J., "On the Flow of Viscous Liquids Through Annuiar Clearance with the Rotating Inner Cylinder," Acta Technica CSAV, No. 6, 1979, PP 665-676.

5-Mansour, H., "Laminar Flow Between Coaxial Rotating Cylinders," Mansoura Engineering Journal (MEJ), Vol. 14, No. 2, Dec. 1989, PP M21-M4 I.

6-Boubnov, B. M., Gledzer, E. B., and Hopfinger, E. J., "Stratified Circular Couette Flow: Instability and Flow Regimes," Journal of Flud Mechanics, Vol. 292, Jun. 1995, PP 333.358.

7-Wereley, S. T., aod Lueptow, R. M., "Azimuthal Velocity in Supercritical Circular Couette Flow," Experiments of Fhuids, Vol. 18, No. 1-2, Dec 1994, PP 1-9.

8-Astill, K. N., "Modes of Adiabatic Flow in the Entrance Region of an Annulus with an Inner Rotating Cyliuder," Ph.D. dissertation, Massachusetts Institute of Technology, 1961.

9- Prandtl, L., "Bemerkungen zur Theorie der Frien Turbulenz", Lenz. ZAMM, Vol. 22. 1942, PP 241-243.

10- Kolmogorov, A. N., "Equations of Turbulent Motion of an Jocompressible Fuid", Itv. Ak nauk SSR, Seria Fizicheska, VI 1942, No. 112, 1942, PP 56-58.

11-Patanker, S. V. and Spalding, D. B., "A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimeasional Parabolic Flows," International Journal of Heat and Mass Transfer, Vol. 15, 1972, PP 1787-1806.

12-Jones, W. P., and Launder, B. E., "The Prediction of Laminarisation with a TwoEquation Model of Turbulence," International Journal of Heat and Mass Transfer, Vol. 1S, 1972, PP 301.

13-Carretto, L. S., Gosman, A. D., Patanker, S. V. and Spalding, D. B., "Two Calculation Procedures for Steady, Three-Dimensional Flows with Recirculation," Proceeding 3rd International Conference on Numerical Methods in Fluid Dynamics, Springer-Veriag, New York, 1972, PP 60-68.

14-Launder, B. E., and Spalding, D.B., "The Numerical Computation of Turbuient Flows," Computer Methods in Applied Mechanics and Engineerng, Vol. 3, 1974, PP 269-289.

15-Lavan, Z., Nielsen, H., and Fejer, A. A., "Separation and Flow Reversal in Swirling Flows in Circular Ducts," Physics of Fluds, Vol. 12, No. 9, 1969, PP 1747-1757.

16-Yamada, Y., and Lmao, S., "Flow of a Fiuid Contained Between Conceatric Cylinders Both Rotating," Bulletin of J.S.M.E., VoL 29, No. 252, 1986, PP. 1691-1697.

17-El-Sbarawi, M., and Sarhan, S., "Developing Lamiaar Free Convection in an Open Ended Vertical Annulus with a Rotating [nner Cylinder." ASME Journal ;"Fluid Engineering, Vol. 103, Aug. 1981, PP 552-558.

18-Morcos. S. M., Abou-Elaii, M. M., Abou-Arab, T..W., "Corobined Forced and Free Turbulent Heat Transfer in a Verical Annulus with Rotating Inner Cylinder," $3 \underline{\mathrm{rd}}$ International Conference on Methods in Thernal Problems, Seattle, Washington, August, 1983, PP 762-777.

Figure (1-a) Variation of Friction coefficient ratio with radius ratio at different angular velocity ratios for $\mathrm{V}_{\mathrm{z}_{\text {mean }}}=50(\mathrm{~m} / \mathrm{s})$

Figure (1-b) Variation of friction coefficient ratio with radius ratio for outer cylinder rotating only ($\omega_{1}=0.0$).

Figure (2-a) Variation of Friction coefficient ratio with Reynolds number for different angular velocity ratios for a gap of radjus ratio $=0.5$

Figure (2-b) Variation of friction coefficient satio with Reynolds number for outer cylinder rotating only $\omega_{1}=0$.

Figure (3) Deveiopment of the flow with the downstream distance for radius ratio $=0.75$ with aspect radio $=50.0$ and $\mathrm{R}_{\mathrm{e}}=6.22 \times 10^{5}$ at $\alpha=-2.0$ - Rotating Cylinders.

Figure (4) Development of the flow with the downstream distance for radius ratio $=0.75$ with aspect radio $=50.0$ and $\mathrm{R}_{\mathrm{e}}=6.62 \times 10^{5}$ at $\omega_{1}=0.0$
\qquad Rotating cylinders.
Stationary cylinders.

Figure (5) Development of the flow with the downstream distance for radius ratio $=0.75$ with aspect radio $=50.0$ and $R_{e}=6.62 \times 10^{5}$ at $\omega_{2}=0.0 \& \omega_{1}=10$. -. Rotating cy linders.

Stationary cylinders.

Figure (6) Development of the flow with the downstreara distance for radius ratio $=0.75$ with aspect radio $=50.0$ and $\mathrm{Re}_{\mathrm{e}}=6.62 \times 10^{5}$ at $\alpha=4.0$ Rotating cylinders. Stationary cylinders.

Figure (7) Three-dimensional representation of the predicted tangintial mean velocity for different angular velocity ratios at radius ratio $=0.6$ and $\mathrm{R}_{\mathrm{e}}=6.62 \times 10^{5}$

Figure (8) Variation of fully developed flow parameters with radius ratio at aspect ratio $=50 \& \omega_{1} / \omega_{2}=-2.0$.

$R_{e}=1.98 \times 10^{6} \cdots \cdots R_{e}=2.78 \times 10^{6}$.
$R_{e}=2.78 \times 10^{6} \cdots \cdots \cdot R_{e}=3.97 \times 10^{6}$.
$R=5.16 \times 10^{6}$.
Figure (9) Variation of flow parameters with Reynolds number for fully developed fiow at aspect ratio $=33 \& R_{1} / R_{2}=0.5$ and $\omega_{1} / \omega_{2}=0.5$:
a) Axial mean velocity.
b) Tanginial mean velocity
c) Turbulence intensity distribution.
d) Shear stress distribution

