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ABSTRACT 
In the framework of the irreversible thermodynamics we 

study a rarefied and collisional warm electron plasma under the effect 

of external strong magnetic and electric fields w7hich generate small 

wave amplitudes. We adopt the linear theory and normal mode solution 

in the MHD model to calculate the pei-turbation in pressure, mass 

density, components of velocity, electric and magnetic fields. By 

applying the second law of thermodynamics it is concluded that the 

change in the internal energy of the plasma particles predicts whether 

they gain from or  loose energy to the generated waves .The obtained 

results agree with the physical ground bounded by the positive nature of 

the entropy production. The predictions have been carried out within 

the range of the frequency of the generated waves and the distance from 

the Debye sphere. 
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INTRODUCTION 

Considerable interest has been aroused in the study of a small 

amplitude waves in plasma by applying the normal mode solutions, for 

example,Stix [I]  investigated the natural modes of oscillation of a 

cylindrical plasma of finite density at  zero pressure in a longitudinal 

magnetic field, he considered frequencies well below the electron plasma 

and electron cyclotron frequencies, at  different cases he found the 

dispersion relations and the plasma current. 

Willett [2] studied magnetoplasma-filled waveguides, he applied 

the linear theory where the perturbation quantities was given by the 

factor exp[i(kz- cot)]. The components of the electric and magnetic fields 

are estimated and the dispersion relation of the system is obtained. 

Recently, Cranmer 131 studied the state of the plasma in a 

magnetic field by applying the linearly perturbed Vlasov equation, in 

which the distribution function is expressible in the Boltzmann equation 

and then investigated the dispersion relation. He tackled the case of the 

initial problem where cl, = co, + i a .  

Khalil et al. [4] investigated warm, magnetized plasma in 

waveguides and applied the linear theory with perturbations in the form 

f(x,y,z,t) = f(x,y) exp[i(kz- a t ) ]  . They calculated the average power flux 

from the pointing vector. 

a Ions Loverich and Shumlak [S] solved numerically the equ t '  

describing the two-fluid plasma system in one dimension. This consists 

of electron and ion continuity, momentum and energy equations. They 

solved the full Maxwell equations, by including displacement current , 
and electron and ion currents. The fluids were assumed to be collisional 

and non-relativistic. 



NONEQUILIBRIUNI THERklODMVARIIC TREATMENT OF 

In this paper the MHD model together with the non-equilibrium 

thermodynamic viewpoints are adopted to study the case of warm 

plasma under the effect of external strong magnetic and electric fields. 

In the beginning we mention a nomenclature of the variables and 

parameters used in our study: 

- c = speed of light, 

- C, = specific heat a t  constant pressure, 

- e = electron charge, 

- E = electric field, 

- H = magnetic field, 

- KB = Boltzmann's constant, 

- m = electron mass, 

- n = electrons number density, 

- P = electrons pressure, 

- S = entropy, 

- T = electrons temperature, 

- U = internal energy, 

- u = fluid velocity (the mean velocity of electrons in a plasma), 

- V = phase velocity of a small amplitude waves, 

- Vs = speed of sound, 

- Vth = thermal velocity, 

- p = electrons mass density, 

- a = entropy production, 

- wee = collision frequency between electrons, 

- o = frequency of a small amplitude waves, 

- o,, = electron cyclotron frequency, 

- cop = plasma frequency, 

Ad = Debye length . 
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The physical situation and mathematical formulation 

We shall investigate theoretically the characters of the small 

amplitude waves generated in a warm rarefied collisional plasma 

influenced by external strong electric and magnetic fields[6], that is to 

unsure the confinement and equally to avoid boundary effects. At t=O 

we assume that the plasma is in thermal equilibrium. The ions are too 

massive to move at  the frequencies involved and form a fixed, uniform 

neutralizing background of positive charges. Therefore the collisions 

between the electrons are only considered [4]. 

Now applying the MHD model in which the essential equations 

will be the continuity of mass, equation of motion, energy equation, and 

Maxwell's equations [7,8,9]. Replacing each variable by its equilibrium 

value plus a small amplitude of oscillations such that the terms 

containing higher amplitude powers can be neglected. We consider the 

normal mode solutions in which the perturbed quantities vbry like 

exp[i(r. P - at)] ,where o is a real number and solving for a complex 

wave number, where energy dissipation is expected, k = k, +ia. The 
W 

real part is k, =-, while the imaginary part a is the damping v 
(attenuation) coefficient and we assume a very weak instability with O < 

a << k, . This is appropriate for the case of source problem [lo] 

The one fluid equations are [4,7,8] 

. The continuity equation 

(1) 
dP - - + V . ( p C ) =  0 . 
at 
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.The err erav equation 

2 = - p e p  
dt m 

. Mnxwell's equations 

(5) 
1 - - 4 n -  
- - = V x H - - J  . 
c at C 

In this section a detailed investigation of the behavior of plasma 
waves is developed starting from the linearization of the system (1-5). 

The linearized equations are obtained by setting [4,5], 
P = P , + F  

T = T O + F  

The terms with 0 subscripts are the background constants and the terms 
with a tilde are  small linear perturbations from the background value. 
These variables are substituted into the nonlinear equations. W e  assume - 
that Go = v 0  Ha, =Hoe ' ,  , Eat =Eox<+Eoyt',  +EozIz  and the 

a 
condition - >>> is fulfilled [4]. 

dz 

The perturbation of the mass density and temperature are expressed in 
terms of the pressure and entropy through the equations of state [ l o ] ,  so 
that to redace  



ABOURABIA & SHAHEIN 

where the perturbed variables are  expressed by the normal mode 
solutions in the form 

i l .7 -wt )  B ( P , ~ )  = re ( 

Y(3 , t )  = p? ;@-or) 

- - 
v ( r ,d )  = ve i(i.r-ot ) 

I?(?, t )  = He i(i.~-ot ) 

E(F, t )  = Ee i ( i . i - o r )  

- 
We take ?(7,t)=v',i-vZZz , k . ? ,  = 0 , w h e r e  v',=~,e'~-tv,,e',,and 

k is directed along the z-direction [4]. 

The non-equilibrium thermodynamic predictions of 
the problem 

In order to study the irreversible thermodynamic properties of 

the system we begin ,with the evaluation of the law of increase of entropy 

and the law of change in internal energy. 

. The entropy production equation can be written as (121 

. The first and second laws of thermodynamics can be combined in the 
form r131, 

All equations of the one fluid system can be put in more convenient 
form if we use some simple thermodynamic relations [lo], Thus, 
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Several non-dimensional factors are developed that are common plasma 

variables; these variables characterize the system under study. The non- 

dimensional barred variables are defined as follows: 
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Therefore the complete system of equations will be rewritten as: 

. The continuitv equation 

(15) (W - kLIv0)r  - ( " - k ~ l v O ) V ) - k L I v I  3 = 0 

C 
where L, =- 

j2d ' e e  

. The equation o f  motion 
Along the x-axis: 

(1 6 )  

Along the y-axis: 
(17) 

Along the z- axis: 

(i(w - kL,vo ) - 1)v, + E, - (vo + 9ikL, a, - EoI )T 

2 

where a =[%I , 

. The enern  equation 
(19) 
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where To CP L, =- c 2  ' 

. Maxwell S equations 

In the process of non-dimensionalization, three factors have been 
appeared, namely al, L1, L2 . The linear system of equations (15-24), can 
be written in the matrix form AB = C, where, 

(27) 
7 

~ = ( v ,  v, v, I- P E, E, E, H ,  H y )  

(28) ~ = [ a , ]  ,where i , j= l -+ lO  
The nonzero matrix elements are : 
a,, =a,, =-a4, =( I - i (w-kvoL, ) ) ,  a,, =-a,, = w e ,  a,, = u j ,  =-E,,, 

Eox Eo, vo iw aI5  = - 2 
9 a25 = - ag5 =- ass =T C l l O l  = aga =-Limp , 

3 3 3 U P  

a33 = a66 = -a7, = inlOlO = -ia,, = -L,k , a,, = a,, = n,, = -a,, = -1 , 
ag4 = a29 = a j8 = -ai l o  = -vo 9 a,, = ~l~~~ = in,, = in,,, = w , 
a24 = as, ,= -EOy 

ikL, a, 

2 



v v 
EOz iL2 ( k ~ ,  vo - w) . a,, = - i L ( k ~ , v ,  - w ) - ~ + i a , ( 5 k L , v 0  -3w)+--- 

6 -3 3  
and 

(29) C = (E0,ea E,,em 0  C,, CIS  0  0  v0em 0  o r  , 
where C = ( - E bUz , C,, = (v,EOz - v: tm . 

DISCUSSION AND CONCLUSIONS 

The irreversible thermodynamics and the normal mode solutions of 

the linearized MHD equations are applied to study the behavior of a 

warm, collisional, rarefied plasma in external strong electric and 

magnetic fields. 

I t  is worth noting to mention some general remarkes at  the 

start,namely: 

1-The estimated variables are in complex form, where we take those 

parts which satisfy the physical ground bounded by the positive nature 

of the entropy production. 

2-The computations are performed according to the works [9,11,12] for 

warm hydrogen plasma subjected to the following conditions and 

parameters : 

n = 1014 cm", T = 10 eV, cope = 5.639~10 '~  radlsec, wee = 144 sec-' , 
Ad = 2 . 3 5 ~ 1 0 ~ ~  cm , Ho = 3 . 2 ~ 1 0 ~  Gauss , e = 4.8032~10-'~ statcoulomb, 

Vth =1.326x108 cmlsec, c =2.998x101° cmlsec, Vs =5.654x106 cmlsec, 

me = 9 .1~10"~  g, C, = 3.793~10" erglg-deg(K) [lo], In A =PI.%, 

Kn =1.38~10-'~ erg/deg(K), and x = 1.032~10~ crglsec-cm-deg(K) [12]. 

These solutions are estimated under the assumptions that the non- 

dimensional value of both the external magnetic and electric fields is , 



llZC 0, 
- 8.19x10-~ so that the external magnetic taken w.r.t. the factor - - 

e 
field will amount to Ho = 2.6~10" to unsure the confinement of the 

plasma, whereas Eox = Eoy = EoZ = lo9  .The characteristic frequencies are  

o p  = ace = 3.9~10' such that o,< w~,w,,  < w while a = 2.35x10-~ is 

evaluated in the ranges w = [lo8, lo1'] and V = [lo", lo5], which are  

bounded by the positive nature of the entropy production. 

3- The graphs show that the components of the velocity will follow the 

tracks of the corresponding components of the electric field. 

Since the thermodynamically non-equilibrium state of the system is in 

the focus of our attention therefore we shall start with; 

The entropy production a : 

I t  is seen in figure (1) that all over the surface the entropy production 

a is positive within the intervals of the frequency and phase velocity; 

which is in a good agreement with the H-Theorem [14]. We note that o 

increases smoothly and nonlinearly within the interval V = [lo-', lo"] a t  

o = 10" while it takes a constant value a t  o = lo8  within the same V 

interval .It is observed that a is a constant within the interval o = [lo8, 

lo"] a t  V = lo-' but increases smoothly and nonlinearly within the same 

interval of the frequency at  V = 10'~. 

The entropy S : 

The warm plasma is far  from the equilibrium state in the beginning 

of the frequency interval and approaches to the equilibrium state as the 

frequency increases. I t  is seen from figure (2) that the maximum amount 

of entropy equals to zero. 

The pressure P and mass density e : 
The amplitudes of the pressure and mass density are substationally less 

than unity, this agree with the assumption of small perturbations; scc 

figures (3,4). Thcy decrease smoothly and nonlinearly within the 
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interval w = [lo8, 101O.l] at  V = [lo-', and clearly decrease slorvly 

within the interval V = [lo", lo-''" at  w = 10'~*'. 

Figure (1): The entropy production a 
vs. the frequency and phase velocity. 

Figure (3): The pressure P vs. the 
frequency and phase velocity. 

Figure (2): The entropy S vs. the 
frequency and phase velocity. 

Figure (4): The mass density p vs. the 
frequency and phase velocity. 

The x-component of the electric field : 
The amplitude of Ex increases slowly nonlinearly within the interval V 

= [10",10"] at  o = [2x10'~,10~~]. I t  increases suddenly within the interval 
V = [lo", 2x10-'1 at  o = [lo8, 2x10~~] .  Ex takes a constant large value 
within the interval V = [2xl0-~, lo5] at  the same frequency interval. I t  is . 



directed along the positive x-direction with amplitude less than the 
external strong electric field EO ; see figure (5) . 
The x-component of the velocitv : 

The amplitude of v, takes positive values less than 1, it increases in a 
quasilinear manner within the intervals V = lo"] a t  o = [2x1010, 
10"], and nonlinearly decreases at  w = [lo8, 2xl0'O] for the 
same V interval; see figure (6) . 

Figure (6):The vx -component of the 
Figure (5): The Ex of the velocity vs. the frequency and phase 
electric field vs. the frequency and velocity. 
phase velocity with respect to Eo = lo9.  

Figure (7): The H, -component 
{Y of the magnetic field vs. the 

frequency and phase velocity 
with respect to Ho = 2.6~10". 



The v-component of the magnetic field : 

The amplitude of H, decreases nonlinearly for all values of V 

within the interval w = [lo8, 10"], and takes a nearly constant value 

a t  the beginning of the frequency scale for all the values of V; see 

figure (7). Its amplitude is of the order 10' less than the external 

strong magnetic field Ho . 
The v-component of the electric field : 

At the beginning of the frequency interval, the amplitude of Ey takes 

zero value and decreases to (-ve) values within the interval and w = [lo8, 

2 x 1 0 ' ~ ~  at V = lo-'. I t  increases nonlinearly to (+ve) values within the 

interval V = [lo-', a t  o = lo8, and then increases quasilinearly 

within the interval V = [lo", lo"] at  w = lo1', the amplitude of Ey is less 

than the external strong electric field Eo ; see figure (8) . 
The y-component of the velocity v, : 

At the beginning of the frequency interval w = [lo8, 2 x 1 0 ~ ~ 1  for all of 

the V interval, the amplitude of vy takes (-ve) values, and increases 

suddenly within the same interval of w. But it increases slowly 

nonlinearly as the phase velocity V increases within the interval 

w = [2x10'~, lol']; see figure (9). 

The x-component of the magnetic field : 

At the beginning of the frequency interval, the amplitude of H, takes 

zero value and decreases suddenly within the interval o = [lo8, 

2xl0 '~lfor all the V scale. I t  increases slowly within the interval V = [lo- 

', at  w = [lo8, 2a10"]; see figure (10) . I t  takes the negative x- 

direction where its amplitude of the order lo2 less than the external 

strong magnetic field Ho . 
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Figure (8): The Ercomponent of the Figure (9): The v, -component of the 
electric field vs. the frequency and phase velocity vs. the frequency and phase 
velocity with respect to Eo = lo9. velocity. 

Figure (10): The H, -component 

of the magnetic field vs. the 

V frequency and phase velocity. 
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The z-component of the electric field: 

The amplitude of E, begins with zero a t  m=108 ,then increases suddenly 

to a maximum in the narrow interval of a=[108 ,10'~] for all the range of 

V .Then decreases nonlinearly gradually within the intervals o 

=[10'~,10~'], V = [lo", lom3]. Its amplitude is of the order lo4 less than the 

external strong electric field Eo ; see figure (11). 

The z-component of the velocity : 

At the beginning of the frequency w=lo8 the amplitude of v, takes a 

zero value and increases suddenly to a maximum at  ~=10".  Within the 

interval w =[10'~,10'~], V = [lo", lo"] it decreases nonlinearly gradually; 

see figure (12). 

Figure (1 1): The E,-component Figure (12): The v,-component 

of electric field vs. the of the velocity vs. the frequency 

frequency and phase velocity. and phase velocity. 

The internal energy change d'lJ : 

The change in internal energy of the electrons diminishes substantiaI1y 

in the course of time giving it to the propagated waves. I t  takes a ' 
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constant value within the distance interval z l  = [50, 1001, this loss in the 

internal energy is of the order 10" at  w = lo8 and V = lo-'; see figure 

(13-a). 

We notice that the loss in the internal energy change increases as w 

increases a t  V = lo-'; see figures (13-b,c). The value of dU is unchanged 

within the interval of the phase velocity; see figure (13-a,d). 

Figure (13-a) : dU at o = los, V = lN5. Figure (13-b) :dU at w = lo9, V = lN5. 

Figures (13, a-d) show the change in internal energy uU vs. the time and 
distance intervals. 
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