Elmansoura University
Faculty Of Engineering Electronics and Comm. Engineering Dept.

Linear systems \& Networks - $2^{\text {nd }}$ year
June 2013
Time 3 Hours

Attempt the following.
1- For circuit (A) find the time response $v_{2}(t)$ given $i_{1}(t)=t U_{(t)}, \quad i_{2}(t)=e^{-2 t} U_{(t)}$. and the initial conditions are specified as; $\mathrm{V}_{0}=1 / 4$ volts and $\mathrm{I}_{0}=0$. (15pts)
2- For circuit (B) find the voltage transfer function $V_{o} / V_{i n}$. Choose suitable values for R, L, and C that yield a circuit suitable to select inputs within $1 \mathbf{- 1 0} \mathbf{k H z}$ frequency band. (10 pts)

(A)

(B)

3-Determine the function corresponding to the Bode magnitude plot shown in Fig (1). (10 pts) 4-Write the matrix state equation for the circuit shown in Fig.(2). (10pts)

Fig.(2)

5-Find the transmission parameters (ABCD)for each of the two ports in the figure below (10 pts)
\qquad

6- For Fig.(3) find the scattering parameters for the two port shown when double terminated by one ohm resistances. (15pts)
7- In Fig. (4) the two transistors are identical and each has a $\mathbf{C E} \mathbf{y}$ parameters $\mathbf{Y}_{\mathrm{ine}}=\mathbf{1 S}, \mathbf{Y}_{\mathrm{re}}=\mathbf{0}, \mathbf{Y}_{\mathrm{fe}}$ $=10 \mathrm{~S}$, and $Y_{o \mathrm{oe}}=0.1 \mathrm{~S}$. Write the IAM of the circuit, and find $\mathrm{V}_{\mathrm{o}}+\mathrm{V}_{\mathrm{in}}$ (15pts)
What will be $\mathrm{V}_{\mathrm{o}} / V_{\text {in }}$ if transistors are ideal (10 pts)?
8- Find the input impedance $\mathbf{Z}_{\text {in }}$ for the circuit shown in Fig.(5). Assuming ideal Op Amp. (15pts)

Fig.(4)

Fig.(3)

Full Mark loopis

