Mansoura University Faculty of Engineering
Math. \& Engineering Physics Dept.

First year Final Exam 2014

Math. (4)
[1]-(a) Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem
(0.1)

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, \quad y(0)=y^{\prime}(1)=0 . \tag{10pts}
\end{equation*}
$$

[b] Find the Fourier series of the periodic function of period 2π

$$
f(x)=\frac{x^{2}}{4}, \quad|x|<\pi
$$

and use this series to verify the identities

$$
\begin{equation*}
\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \tag{10pts}
\end{equation*}
$$

[c] Prove that

$$
\begin{equation*}
4 \cdot J_{n}^{\prime \prime}(x)-J_{n+2}(x)+2 \cdot J_{n}(x)-J_{n-2}(x)=0 \tag{5pts}
\end{equation*}
$$

[d] Evaluate
$\int_{-\infty}^{\infty} \frac{e^{2 x}}{a e^{3 x}+b} d x \quad \int_{2}^{5}(x-2)^{1 / 2}(5-x)^{1 / 3} d u \quad[10 \mathrm{pts}]$
[2]-(a) Using the Fourier integral representation, show that
$\int_{0}^{\infty} \frac{\cos w x+w \sin w x}{1+w^{2}} d w=\left\{\begin{array}{l}0, \quad x<0 \\ \pi / 2, \quad x=0 \\ \pi e^{-x}, \quad x>0\end{array}\right.$
[b] Solve IBVP

$$
\begin{aligned}
u_{t} & =u_{x x}-e^{-x}, & & 0<x<1, \quad t>0 \\
u(0 . t) & =u(1 . t)=10, & u(x .0)=\eta(x) &
\end{aligned}
$$

[c] Show that

$$
\begin{equation*}
\frac{d}{d x}\left[x^{n} J_{n}(a x)\right]=a x^{n} J_{n-1}(a x) \tag{5pts}
\end{equation*}
$$

[d] Obtain the Legendre Polynomial $P_{4}(x)$ from Legendre differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y+n(n+1) y=0 \tag{10pts}
\end{equation*}
$$

3. (a) Show that $u(x, y)=x+e^{y} \cos x$ is harmonic. Find an analytic function $f(z)=u(x, y)+i v(x, y)$ as a function of z.
(b) Show that $|\sinh y| \leq|\sin z| \leq \cosh y$. Describe the points z a which:
i. $|\sin z|=|\sinh y|$.
ii. $|\sin z|=\cosh y$.
(c) i. Let $z=x+i y$. Define each of the following:
$-z, \bar{z},|z|, \operatorname{Arg} z$ and $\arg z$.
ii. Consider the $n^{\text {th }}$ roots w_{k} of the complex number $z=-1$.
4. Write the algebraic properties of w_{k}.
5. Write the geometric properties of w_{k}.
6. There are some properties of w_{k} which depend on the evenness or oddness of n, write some of these properties.
7. (a) Evaluate the following without using the residue theorem:
i. $\int_{C}\left(e^{\cos z} \sin z+\bar{z}\right) d z$, where c is the line segment from $z=$ 0 to $z=\frac{\pi}{2}+i \frac{\pi}{2}$. Put your answer in the form $a+i b$.
ii. $\int_{|z|=2}\left(e^{z^{2}}+\frac{\cos z}{z(z-1)^{3}}\right) d z$.
(b) Use the residue theorem to evaluate

$$
\int_{|z|=2}\left(\frac{\sin z}{z\left(z-\frac{\pi}{2}\right)^{2}}+\frac{3}{2}(z-1)^{3} e^{\frac{1}{z-1}}\right) d z
$$

(c) Consider the function f given by $f(z)=\frac{1}{(z+a)(z-b)},|a|<|b|$.
i. Expand f in a Laurent series valid in $|a|<|z|<|b|$.
ii. Use the Laurent series expansion obtained above to calculate

$$
\int_{|z|=\frac{|a|+|b|}{2} z^{10} f(z) d z \text { and } \frac{d^{10} f(0)}{d z^{10}} ~}^{\text {. }}
$$

