Mansoura University	First year		-
Faculty of Engineering	Final Exam 2014	Participant and an	
Math. & Engineering Physics Dept.	Math. (4)	Time : 3 hours	

[1]-(a) Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

(0.1)

$$y'' + \lambda y = 0,$$
 $y(0) = y'(1) = 0.$ [10 pts]

[b] Find the Fourier series of the periodic function of period 2π

$$f(x) = \frac{x^2}{4}, \quad |x| < \pi$$

and use this series to verify the identities

$$\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$
 [10 pts]

[c] Prove that

$$4 J_n''(x) - J_{n+2}(x) + 2 J_n(x) - J_{n-2}(x) = 0$$
 [5 pts]

[d] Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{2x}}{a e^{3x} + b} dx \qquad \qquad \int_{2}^{5} (x - 2)^{1/2} (5 - x)^{1/3} du \qquad [10 \text{ pts}]$$

[2]-(a) Using the Fourier integral representation, show that

$$\int_{0}^{\infty} \frac{\cos w \, x + w \, \sin w \, x}{1 + w^{2}} \, dw = \begin{cases} 0, & x < 0, \\ \pi/2, & x = 0 \\ \pi \, e^{-x}, & x > 0 \end{cases}$$
[10 pts]

[b] Solve IBVP

$$u_t = u_{xx} - e^{-x},$$
 $0 < x < 1, t > 0$
 $u(0, t) = u(1, t) = 10,$ $u(x, 0) = \eta(x)$ [10 pts]

[c] Show that

$$\frac{d}{dx}\left[x^n J_n(ax)\right] = a x^n J_{n-1}(ax)$$
[5 pts]

[d] Obtain the Legendre Polynomial $P_4(x)$ from Legendre differential equation

$$(1 - x2) y'' - 2x y + n(n+1) y = 0.$$
 [10 pts]

Dr. Mohamed El-Gamel

- 3. (a) Show that u(x, y) = x + e^y cos x is harmonic. Find an analytic [10, function f(z) = u(x, y) + iv(x, y) as a function of z.
 - (b) Show that |sinh y| ≤ |sin z| ≤ cosh y. Describe the points z at [10 pts] which:
 - i. $|\sin z| = |\sinh y|$.
 - ii. $|\sin z| = \cosh y$.
 - (c) i. Let z = x + iy. Define each of the following: [10 pts] $-z, \bar{z}, |z|$, Arg z and arg z.
 - ii. Consider the n^{th} roots w_k of the complex number z = -1.
 - 1. Write the algebraic properties of w_k .
 - 2. Write the geometric properties of w_k .
 - 3. There are some properties of w_k which depend on the evenness or oddness of n, write some of these properties.

4. (a) Evaluate the following without using the residue theorem: [10 pts]

i. $\int_C (e^{\cos z} \sin z + \bar{z}) dz$, where *c* is the line segment from z = 0 to $z = \frac{\pi}{2} + i\frac{\pi}{2}$. Put your answer in the form a + ib.

ii.
$$\int_{|z|=2} \left(e^{z^2} + \frac{\cos z}{z(z-1)^3} \right) dz.$$

(b) Use the residue theorem to evaluate

$$\int_{|z|=2} \left(\frac{\sin z}{z \left(z - \frac{\pi}{2} \right)^2} + \frac{3}{2} (z - 1)^3 e^{\frac{1}{z-1}} \right) dz.$$

(c) Consider the function f given by $f(z) = \frac{1}{(z+a)(z-b)}$, |a| < |b|. [10 pts]

- i. Expand f in a Laurent series valid in |a| < |z| < |b|.
- ii. Use the Laurent series expansion obtained above to calculate

$$\int_{|z| = \frac{|a| + |b|}{2}} z^{10} f(z) dz \text{ and } \frac{d^{10} f(0)}{dz^{10}}.$$

I. A. El-Awadi

[10 pts]