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Abstract:
The work aims at developing a new stability approach used to carry out

transient stability studies of a multimachine power system when the generator
internal voltage components E’ qand E’ 4 are changing with the time. Consider-

ing the generator mechanical damping and the generator control systems ( that
15, the voltage regulator and speed governor), each generator is represented by
a 6th-order dynamic model, then the mathematical model of the whole system
is derived. Applying the decomposition-aggregation method, the system is de-
composed by using the ftriple-wise decomposition. Then a vector Lyapunov
function is constructed and used for aggregating the system. An aggregation
matrix is obtained, the stability of which implies asymptotic stability of the sy-
stem equilibrium state.

As an illustrative example, the developed stability approach is used to ca-
iy out transient stability studies of a 7-machine, 14-bus power system assumi-
ng a 3-phase short circmt (with successtul reclosure) near a generator,or a load,
bus. The faunited line is tripped out for clearing the fault. An estimate for the sy-
stem asymptotic stability domain is determined and used to determine directly

the critical time for reconnecting the isolated line. It is found that the proposed
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stability approach is powerful and may be used for stability studies of real

power systems.

List of symbols:
P - Pe; = mechanical power, clectrical power of ith machine

Pg, . P = variation and steady-state variations of ith machine mechanical power

0 = rotor angle. or position of the rotor g-axis from the reference
P

Xg4-X q= direct-axis, quadrature-axis synchronous reactances

X4 X' Q= d-axis, g-axis transient reactances

Egp, = exciter voltage referred to the armature circuit

E’ = voltage behind d-axis transient reactance

E d- E q= d-axis, g-axis components of the voltage E

Eq = armature emf corresponding to the field current

mo ~ had & ol Al Al .

J, EFD .E q E 4= Steady—state values of &, E ,, E q and E § Tespectively
V; , Vo= terminal voltage, terminal voltage variation

Vf qi’ Vi¢;= q-axis and d-axis components of the voltage V,

Vi, Vi and V' = steady-state valucs of Vy , V,_ and Yy, . respectively

I q° I°d= steady--state g-axis and d-axis current components
K . T g = the exciter gain and time constant

® = rotor speed with respect to the synchronous speed

T do T = direct-axis and quadrature-axis transient open-circuit time constants .
D, .M, mechamcal damping and inertia coefficient

A = (O; / M ; )= mechanical damping coefficient

(1 /)= time constant of first-order speed govemor
( O/ W )= eain of first-order speed governor

Jp =1 iL i1, N }=set introduced to denote the Ith subsystem machines

0j=0i=8;= 8~ 9y : 0 =8;-8 =0, -0y
AlJZAAlequ E .+ ~ di Fd! > A l'_l::“ AJXZEQIE({] —EdlEq_]
fov =Y, cos(e -3 lJ) . go; =Y, sin(eij_aoij)
K. —(xd] xd])dem o I‘—(\q’ "q_j)'/quoJ
flxjﬂ=(XJ’Xj)2 : Vi=LiTg
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. LI ) . ron ’

r _— . 0 0 : . - s )
A =[ViRy Vi X5/ VY (Xy5-Xp ] ; L= Ty
r.‘:[xj"‘ K_}BJJ E ’jEJIN
0
2 .2 md Y arcdefinedandas N, v N and Z?;‘J‘l‘ Jrespectively

Lo j=1 7 Lo jzi

Z2.7Z3 and Z4 = three functions, defined as follows:

Zy(o, 0 )=min { V2 max (||, |9]);(Jal+]0])]}

zatee . 9, 7) =min { 2max{jo], ] o LI y1): (led +1d 1+ 7] ) Z2[22(,
o, 9),7) 22220 9, v), 2} sZ2[Z22(y, ), 9] }

Z4(c, ¢, v, @) =min {Za[Za(la |, 14 L1y D Wl s zafza(wl, 1 61,
vy D slad]za[ za(lo fw iy 1 o 1] 22 Za(lod, | &1,

Py ) s
1_Introduction:

The digital-simulation method of determining the power system transient stab-
ility gives very accurate results and the method can be used with any degree of mo-
deling sophistication. However, one disadvantage of the digital-simulation method
is that, depending on the size, complexity and modeling refinement of the system, it
may require huge computational cffort, despite the dramatic progress of computer
performance in recent years {1].  Another drawback is that it does not provide at a
glance the physical insight into the qualitative behavior of the set of differential eq-
uations, ie. of the response for changes in system parameters. Thus sensitiﬁty asp-
ects of the system are not obvious and sensitivity analysis using the digital —simula-
tion method can only be handled via tedious numerical simulation [2]. This leads
one to look at some other direct methods of finding the transient stability, and hence
the critical clearing time, without explicitly integrating the system dynamic equatio-
ns.

in the last three decades numerous efforts have been made to apply direct meth-
ods of transient stability analysis to multimachine power systems. However, these
methods are potentially useful both as off-line tools for planning putposes and for
on-line security assessment {3].

The well-known ecqual-area criterion is an cxample of such a direct method of
determining the cnial clearing time. Unforunately. this criterion is applicable to

only a single-machine infinite-bus svstem. The transient-energy-function method is
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one of the direct methods of determining the transient stability of 2 multimachine
power system. However, this method has some modeling limitations and for some
cases the energy function may not even exist {4].

The Lyapunov’s dircct method is another type of the direct methods used for
determining the transient stability analysis of a multimaéhina power system. This
method has attracted much attention and has proved t6 be profﬁising tool of analysis
for off-line and on-linc studies [5]. In addition, it can in princif:lc be faster, and also
asses stability margins and sensitivity concerns those numerical-integration metho-
ds are unable to tackle.

The scalar (function) Lyapunov method was used, in the last three decades, to
carry out transient stability analysis of multimachine power systems. However, this
method did not, owing to the continuous increase in the sizes and complexities of
real power systems, seem suitable in particular when the problem of the system sta-
bility domain estimate is attacked [6]. Furthermore, it is very difficult to derive a
valid Lyapunov function for a power system when the automatic voltage regulator
(AVR) effect is considered [7].

The Bellman’s vector Lyapunov function method has been appeared more suit-
able than the scalar function method for application to power systems. The vector
function method allows more sophisticated mathematical models of generators and
transmission. In addition exact estimates of the overall system stability domain may
be defined [8].

The vector function Lyspunov method was used for transient stability analysis
of an N-machine power system [8-16], considering the generator classical model
{i.e. the voltage E’ is constant).

The wansient stability analysis of a multimachine power system was carried out in

[17] considering the one-axis model (ie., the voltage component E' q changes

with time). and the two-axis model (i.c.. both the two voitages E' gand E'¢ change
with time) was considered m {18]. A 10-machine, 11-bus power system was used,
in each of the two papers, as an illustrative numerical example.

In the present work, an N-machine power system is considered and the two-axis
medel represents each machine. Taking into consideration the generator mechanical
damping, the automatic voltage regnlator (AVR) effect and the speed governor act-

ton, the system transicot stability analysis is performed using 3 new decomposition
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-aggregation approach. A sixth-order dynamic model represents each machine. The
whole system mathematical model is decomposed into (N-1)/2, 17th-order interco-
mnected subsystems. An aggregation matrix of the order (N-1)/2 is obtained, stab-
ility of this matrix implies asymptotic stability of the system equilibrium. In a
mumerical example, a power system, consisting of 7 machines and 14 bus, is
considered. The system transient stability studies for a 3-phase short circuit fault are
carried out using the developed stability approach. Three case studies are presented.

2 _Power system model:
Let us consider an N-machine power system (the transfer conductances are inc-
luded) with mechanical dam ping, and assume that cach machine is represented by

the two-axis model [19] Conéidering the speed governor action [15], and the
automatic voltage regulator (AVR) effect [20 ], the absolute motion of each
machine is described by the following five nonlinear differential equations

{the machine stator resistance is neglected):
Mjo;+Djo;=Ppy;+P,;-P
! yy ] Y
T B qi = Emi -E i+ (Xg;-X ¢3) Lg;
# ) L \
qu’._E '=—E di—-(X . - )I
TEi EFDI =~ (Egy “EFDI + Ky Vn )

-pP- a8y A=12... N )
where Pei is given, under the assumption X', = X' ¢ 85
P =2 {EGEE -E, 0,1+ EG[Ef, +E, 9,0}
A=12_ ... N 2)

In eqn.1, the terminal voltage variation VT ; may be given, for simplicity, in the
form [19],

\{Ti:(v" )Vqu +( Dtdi‘/voti )VTdi

A9
il
=
()

e N (3)
where,
m'(E Eqvi)*’(ldi—lndi)xﬁd«i
Vo = [ X X - X D IE 4 ~Eg) 12, N (@)
Now, lct the following (6N-1) state variables to be introduced (the Nth- machine
is chosen as a comparison machine),
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®;=8i EQi=E‘qi‘Eqi ;. En=E4-Ey4

Bei= By Bopy Ping"'Pogi i=12,..N

Then, the whole system motion can be derived in the form (see Notation),
d"N=(D-—(0N .= N
&i=-ho+P M- M) [Eor B ) Z° (Bt B f, -
"(EDj+Edj)gij} +(Ept By Z = {(EDJ.+Edj) f, +
P EgrEped - 2T A, F-A e
Eg=-TiE g+ B+ K I {(EpvBpf+ BB gy,
—Edjfoij—ﬁ 9%}
E .=-(1/qu,)Em L2 {(Eg+EF. - (EprB g, -
-E f +Ed] ,,,
EEXHA.E +KiEy-ViEBg- A, Z*{(Enj+ﬁdj)fij+
+(Eg B 8, Ed]f° Ei0%
Pi=-p; Py *Cii@, ,n=1,2...,..,N ©)
3 Power system decom tion :
The first step in the system decomposition is performed by determining the sys-

tem Nth-order reduced admittance matrix Y, where the system loads are represent-
ed by constant shunt impedances, and the system buses are climinated, retaining
only the generator internal nodes. Then, using the triple-wise decomposition [13,14,
16], the systemis decomposed into (N-1)/2 interconnected subsystems, each has a

state vector X in the form:

X=[Oyy» Oiperpg - @y - O gy Oy, E:Qil -Eqier » Egyy - Eny ;EDiIH’
Epwe Epio Egiers B P P P X X X oo Xl )

Finally, the system mathematical modz! (eqn.6) is decomposedinto S = (N--1)/ 2,

17th-order interconneeted subsystems, cach of them can be written n the general

o

form

Y

X =P X +BFy+h (XY, 5 -0 X, F12. 5 @

where P, B, and C, arc constant matrices with appropriate dimensions. In
eqn. 8, F, is a nonlinear vector function whose olements are chosen zuch that
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they satisfy the Lure’s sector conditions, and h, is an interconnection (vector)
mafrix. '
Now, defining each free {(discomnected) subsystem as,

\ T
X,=P, X+B,F(6,) ., 0,=C,; X, I=12,...,8 ()

it is found that the vector F| contains, at most, the following three nonlineariti-
es,

. Q . 0
Sy ©p)=sin(0, 8, )-sind y
o  w®
S (G p)=sm (G, y +0 iy ) - sin d LN
v 9
SO sin (O oyt 8y ) -sind

(10)
which satisfy the conditions:
2
C,fy (Gg) 2 €, G, k=123 a1
where €, € (0,& ) and § . is positive number and may be determined as,
En=(0fp 0 )/ 00, ) |5, =0 k=123 (12)
Referring to eqns.6-8, the following matrices are defined (see Notation):
- ! ] { 7]
.y :—a l Oz
| t r : !
:*Pn :‘Pu :“P13:°3x3 1 Py
| t ' + -
= ! ! i
Py = °17x2', {‘me Pm: Py
: o9x3 : : T ! o9x3
‘ ,‘Pm:‘l’w:oaxa :
] : i | |
' " Prgl Pygl-Pyy !
L { 1 i ;
| i
| .
! =P : Oss9 :‘P ne | 13)

where O and I are zero and identity (square) matrices, respectively, of the in-
dicated dimensions, and @ is a second-order unit vector and where,

P= diag [ A , Aers Ay ; P=diag [0, 0, . 0]
P;=diag [@*il’(@‘ilﬂ ’®*N] , Py=diag[/ My My, M)
P s=diag[ly. Ty, Iy ; Pm:diagleix’énﬂ’énl

P = diagl¥ ;. % yor» Ay : P =diagld,.d,, .dy]
P =diag[B ;. P . Pyl ; P o =diagM .My > My ]
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P, =diagld ;. 9. 0y ; P, =diaglv, , Vit vyl

Py~ diagoey, @y, Ayl Prg=diag iy, by Kyl
- .
°2x3 ,
T et
Br= Bnt Bp ' Bp (14)
°3x3
where

Bp = [qxIN’O qN.x!’uxlN’O Uy, - ﬂN’O LEVEE
~Vyy - 0 V}m]

Bp=[0,-q 1y - 9 wjer - 0 Ui - ~Uarsr» 00~ Wiy
. T
Wyt 00 Viny o Vi e

Bo={-q5 1 Qg -0 Uy -V g -0~ Ty

_ T
e 0= Vi Vi - 0]

Fiop=[ fy6,). f,065). £ (‘513)]T (15)
. 1.0 0 :

Ciy={ 0 10 10,4, (16)
|

1.0 -1.0 |

Using eqns.13-16, the free subsystem of eqn.9, is completely defined, and hence
the interconnection matrix hy (X) is obtained as,

T
hyX)=[0,0,h;(X), b (X), e, B (X),0,0,0] A7)
where
2 pi ~
B (X)=-UM ) [ (X5 +X ) Gyua*Cunf n<Gn>+Cn,n+1

fp@p+I 8 +Z Ly ;+Dy;-Ty;+Dy;}]
h14(X)=~(1"Mu+1)[(X217*ino)G wnian P Cpn EnO ) +
tCpp g f 3(5 Bt Sil+l,j+z* {L ey *D gy~
L eyt 11+1 3}]
xs(X)‘“(l"MN y [(x° mt X m)G}m Wit T )+ Cy, i
fpop+Zs N,,‘*E {Lyj*Dyy-Ly;+D 'N,‘i}]
h(X)= Ky [6ﬂ,u fpO +Cyunfp©@p) Sﬂ,j‘
L iI,j]
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BAX)= Ky [ €y F @)+ €y Tp@p+ L é‘im,ﬁ
-zt L i, j] |
hi(X)= Ky [Ty T @)+ Ty Tp@pr I éN,j" - }
2E ]
hip(X)=-Ly[Cy y T @ + Ty Tp@ )+ § 5+
+2F i iI,j]
hno(x)‘=”Li1+1[an+1,N fp© 1)+ Cya fr@p)+L s 141, j
+ ¥ L e, J] '
By (X)=-Ly[Cyy T+ Ty TpEpr &8 N]
220 i N, J]
hrlz(x)z‘hls(x)[AiI/Kﬂ]
hyy(X)=-h(X) [A o/ K]
by (X)=-h(X)[A /Ky
In eqns.13,15 and 17, the following constants and functions are defined:

@ ZEq’G“fM ; @ 2Ed1 /M ; cj=K,G..
dj=Ljij : nj=Aj[1.o+ Xy;By;]
Bj=10.0/T)-1 ;B ; ¢;=K;-A;G; jedy

qkj=(Aijkj+Akj k) My ijz(Aijkj'"Kijkj)
T B4 6y +E By s Ty (B GyE By
U =K € ;BB G

T, Ly (B By +E 4Gy

ijzﬂk(}iijkj—quij) - LkzjLkjedy
Lij={(EqitBy) £+ Egm} B,

L= {(Eqg; qu)glJ Edl i Ep;

(B, £ By0,E,,

qj it

U

’D}j:{(EDj+Edj)fij+(quir}?:qj) 9} Ep;
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Lij:Engij+EDj fii > f‘"zEijij‘EDj 9;;
Sii={Afi O +A 385G Y5

S;J;—{Edjfu (Glj)quj gU(GU)} YU

Si={By; 84 O+ Ey; [3;0 )} Y5

fij(o'ij) = cos (G ;; +d ;J-—Gij)—cos(f)' i~ eij)

gii(o’ii )= sin (Gij+6ij-9ij)‘ Sin(ﬁij-eij ) Lizj.iely
¥II(GII)=°°S(GH,N+8H,N)‘c"ssu,u

f (O ) =cos (0, yt 3 i+1, N )~ €08 8 1N

f

] [+
B3O =008 (O 5Oy ) —c0s &y 4y as)

4_Power system aggregation
Following the aggregation procedure in ref [21], we construct an aggregation
(square) matrix, A =[O ; ], whose elements ( real numbers ) obey the inequality

- 3
VX <y O XX 1=128 (19)
I=1
where V| (X ) is a frec subsystem Lyapunov function, and || X || is chosen to be
a comparison function-
In this work, a Lyapunov function in the following form [8-10, 13-18], is adopted
for each free subsystem:

T 3 ol

VicxXp=XH X+ 5 1 [ Jin© )40y =125 @0)
m =1 0

where, Hy is a 17th-order symmetric positive-definite matrix, the functions j}m are

given by eqn. 10, and 7y, are arbitrary positive numbers.

Now, as a first step for determining the system aggregation matrix, we compute
v ; along the motion of the interconnected subsystem of eqn.8. Then, using a num-
ber of introduced majorizations, the lefi-hand side of inequality 19 is completely

majorized. Finally, the matrix elements OC ;- are obtained and defined as,

»
'?\'1 ,K=1

O"Hf{ _
22,  K#l K,I=12...8=N-1)/2 Q1)
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[
Ineqn.21, A is the minimal (positive) cigenvalue of the 18th-order symmetric mat-

rix R ,whose clements are given by eqn. (A-1), and Z . is defined by eqn. (A-2).

It should be noted that, stability of the obtained aggregation matrix A, implies asy-
mptotic stability of the system equilibrium [21].

§ _Numerical example:

The 7-machine, 14-bus power system shown in Fig.1, is considered, in this exa-
mple, as a simple power system for an application of the developed stability approa-
ch. The first ste;i of the stability computations is performed by determining the ‘sirist-
em reduced 7th-order (symmetric) matrix Y, whose elements are given in Table 1
(see Appendix). Then, the system is decomposed (machine 7 is selected as the com-
parison machine) into three “3-machine” interconnected subsystems, and the follo-
wing parameters are chosen (note that, the elements of the matrix H are chosen so

]
that a largest value of the cigenvalue A is obtained):
W =h,=h", =h", =10, h" = h", =300 k=123
h,=43, h,=h,=67 . hg=225, hy=340, h=350

1 1 1 2 2 2

h399= h310,1o= 11.0, hzu,u" 5
h=Ry=41, Agsh,=43 . Ag=Ag=42 . A,=200
Ty=35 , T,=025; K;=100 ; T,=040 ,i=1,2,3,..7
=02 5 K=300  Li=12,...7
£, =082, €,,=080 , €, =08 , €,,=08l
£5,=084 . £5,=082

Finally, the systern aggregation matrix is computed, by using expression 20, as

-0.513134 0.245680 0.292960
A =1 0400640 - 1.026870 0.453568
0.412400 0.382240 - 0.742801

which satisfies the Hick’s conditions[21], and is thus a stable matrix . This implies
the asymptotic stability of the system equilibrium. Finally, referring to the Append-

ix of ref. [14], we determine the system asymptotic stability domain estimate K ;:
E = X: [V (X)) r V(X)) + V(X)) £ 48017} 22)

where V|, V, and V., are the free subsystem Lyapunov functions, given by eqn.20.
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Now, the developed stability approach is used to determine directly the critical
reclosing time for a 3-phase short circuit fault (with successful reclosure ) in three
case studies as foilows:

1 - The fault is occurred close to generator bus 2 (at 2 % length of the line conne-
cting buses 2 and 7). For isolating the fault, the three lines 2-7, 2-10 and 2-14 are
opened  simultancously using 6-cycle C.B. In addition, duc to operation of the und-
er-voitage relay, the load connected to bus 2 is also removed using 6-cycie C.B.
Referring to eqn.22, it is found that the critical time for reclosing the open lines
with reconnecting the removed load is equal to 0.162 sec (measured from the fault
mstant). Note ihat, using the standard step-by-step method, the exact critical reclo-
sing time is equal to 0.189 sec. Figs. 2-1, through 2-5, show variations of the first
subsystem (including machines 1,2 and 7) states just after reconnecting the removed

load and open lines.

2~ It is assumed in this case that the fault is occurred at a point near bus 3 and
far a distance 2 % length of the line connecting buses 3 and 8. After ¢lap-sing 0.16
sec. the fault is cleared by tripping out the lines 3-8 and 3-14 simultaneously. In
addition, the load connected to bus 3 is removed using 10-cycle C.B. It is found,
referring to cqn.22. that the open two lines with the removed load should be recon-
nected after 0.245 sec (the exact time equals 0.295 sec) from the fault instant. Figs.
3-1 through 3-3, show variations of the second subsystem ( including machines 3, 4
and 7) states just after reclosing the open lines with reconnecting the removed load.

3 —~ In this case the fanlt is occurred near load bus 12 (at 5 % length of the line
connecting buses 12 and 14): Using 10-cycle C.B. the faulted line is isolated, and
after elapsing 0.10 sec from the isolation instant a pulsating load, which may sim-
ulate a load comprising large motors of a rolling mill, of the power (1.20+§0.50) is
added to the load of bus 6. It is found that (eqn.22 is satisficd), the added load can
be kept connected with opening the faulted line until a time of 0.345 sec (the exact
time equals 0.410 sec) is <lapsed from the fault instant. Figs.4-1 through 4-3, show
variations of the third subsvstem (including machines 5. 6 and 7) states just after
reclosing the open line with removing the added load.
It is to be noted that, variations of the states of machine “7 for the considered three
fault cases are verv small and hence they are not shown in Figs 2. 3 and 4. It is also
noted that the computed critical times are nearly equal (about 85 %) the exact times

computed by using the standard step-by-step method.
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6 Concluslons :

A new transient stability approach is developed, in the paper, and the following
conclusions are drawn:

1-For transient stability studies of real power systems, the developed stability ap-
proach is more suitable than the stability approaches developed so far [9-18]. Note

that, in the developed approach changes of the generator internal voltage éompone-

nts E'q and E'§ are considercd. In addition, the automatic voltage regulator (AVR)

effect and the speed governor action are taken into consideration.

2- Using the developed approach (the transfer conductances are taken into consi-
deration), resistance of the sysiem lines can be considered and the system network
can be simplified by eliminating non-generator nodes.

3- For a rcal power system (the number of generators is, in general, much less
than the number of buses), computations of the developed aggregation matrix and
its stability conditions are simple. Note that, order of the developed aggregation
matrix depends only on number of the system machines.

4~ The developed approach is powerful and it may be simply used to carry out
practical stability studies of multimachine power systems.

5- The developed approach can open new horizons to sensitivity analysis probl-
em of power systems. Note that the generator parameters as well as the voltage reg-

ulator and speed governor parameters are considered.
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APPENDIX
Table I : The system reduced admittance matrix ( moduli in p.u. and
arguments in deg )

s 1‘ 1.68799 £-71.68

0.51323 £79.44 \ 0.00051 £98.07 ‘ 0.00048 f_’104.0I
0.00058 /88.92

0.00155 £103.64 | 0.73660 £94.39
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2 | 1.60395 £-74.06 | 0.00144 £101.94 | 0.00142 £104.24 | 0.00146 £97.72
0.00060 £84.22 | 0.71713 £83.55

3| 147795 £-72.23 | 0.41549 £81.64 | 0.00054 £87.73 | 0.00057 293.72
0.68687 £93.48

4 | 133515 £-73.44 | 0.00145 £103.91 | 0.00149 £105.97 | 0.63920 /99.46

5 | 1.89280 £/-69.0 | 0.54867 £91.89 | 0.76704 /83.94

6 | 1.66321 2-75.80| 0.81418 £ 89.98

7 | 743937 £-62.43

Definition of the elements of 18-th order matrix R :
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where the other elements of this matrix are zeto.
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Definition of the agqregation matrix off.diagonal elements:
Ineqn.21, Z ;. is given as (see Notation),
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In eqns.(A-1) and (A - 2), the following constants are defined,
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