c.n 117722)

Jan. 2019 - (1st Semester)

Final Exam.

PERIOD: 3.0 Hr

Answer the following questions:

- 1- a) Explain, what is meant by a transmitting antenna and a receiving antenna? [4 Marks]
 - b) Name the different types of antennas, and draw a sketch for three antennas of different types.

[3 Marks]

c) What is an array antenna?

[4 Marks]

d) Explain why transmission lines do not radiate electromagnetic waves in space.

[4 Marks]

2- a) What are the antenna parameters? Name 5 of these parameters.

[5 Marks]

- b) Sketch the current distribution and the radiation pattern of the dipoles of the following lengths.
 - 1- Infinitesimal,
- 2- Short dipole,

3- half-wave dipole,

4- 1.25 λ dipole,

5- 1.5 λ dipole,

6-2 λ dipole

[10 Marks]

a) A hypothetical isotropic antenna is radiating in free-space, to produce a magnetic field of 50 Micro-Amp/meter, at a distance of 30 meters from the antenna. Determine: (1) the electric field intensity, (2) the power density, (3) the power intensity, and (4) the total power radiated from the source.

[5 Marks]

b) Find the half-power beam-width (HPBW) and first-null beam-width (FNBW), in radians and degrees, for the following normalized radiation intensities:

(a)
$$U(\theta) = \cos^2 \theta$$

(b)
$$U(\theta) = \cos^3 \theta$$

[10 Marks]

2nd Page

- In an electromagnetic wave, what is travelling away from the source? 4a)
 - A dipole of length 10 meters is operating at a frequency of 5 MHz; If the b) peak of the current at the input of this dipole is 1 amp, determine the total power radiated.

What are the magnetic field strength, the electric field strength (rms values) and the power intensity at an angle of 60° from the dipole axis and at a distance of 50 meters?

[10 Marks]

For the straight wire monopole shown in Fig.1, determine the magnitude 5and direction of the electric field and the magnetic field at a field point P₁ at a distance of 200 meters away from the feed point of the antenna and on the Z-axis. Also, find the magnitude and direction of the electric field and magnetic field at a field point P2 at a distance of 200 meters away from the feed point but on a direction of 45° from the Z-axis. Determine the power density, the power intensity and the direction of flow of power at the two points. [15 Marks]

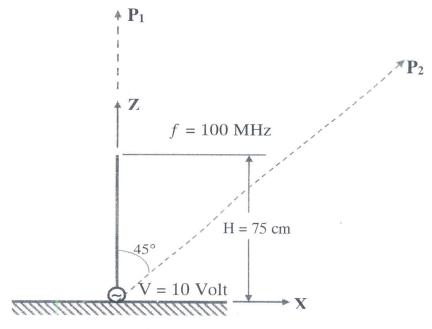


Fig. 1 (For question 4)

6-Why people usually use a half-wave dipole? a)

[5 Marks]

Sketch the radiation patterns of two isotropic sources fed with equal b) currents and arranged at the following conditions of spacing and phasing:-

(i)
$$d = \lambda/2$$
, $\alpha = 0^\circ$

$$d=\lambda/2$$
 , $\alpha=0^\circ$ (ii) $d=\lambda/2$, $\alpha=180^\circ$

(iii)
$$d = \lambda/4$$
, $\alpha = 90^{\circ}$ (iv) $d = \lambda$, $\alpha = 0^{\circ}$

(iv)
$$d = \lambda$$
, $\alpha = 0^{\circ}$

[10 Marks]

(Good Luck)