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ABSTRACT

Signal detection in the presence of additive Gaussian noise can be performed using higher order staristics. This
paper deals with a processing of single and multiple emergency signals that relayed from the low pelar orbit satellite
using parametric spectral estimation techniques with Second and Higher Order Statistics. The detection algorithm based
on the Second Order Statistics (SOS) using the parametric techniques, which are the Maximum Entropy Method
(MEM), and MUltiple Slgnal Classification (MUSIC) is designed and examined in this paper. Simulation results
illustrate successful performance of signal detection at low signal to noise ratio. These proposed methods suppress
additive Gaussian noise of unknown power spectrum, detect and characterize the main properties of the ransmitted

signals.
I- INTRODUCTION

During recent vears there has becn an increasing interest in applying higher order statistics to a wide range of
signal processing and system theory problems. These higher order statistics are very useful in problems where non-
Gaussiantty. non-minimum phase, colored noise, or where nonlinearities are important and must be accounted for [1,2].
These staristics known as cumulants, and their associated Fourier transforms known as polyspectra, not only reveal
amplitude information about a process, but also reveal phase infermation. This is important because, as is well known,
second order statistics (i.e. correlation) are phase blind. Higher order spectra (also known as polyspectra) are defined in
terms  of higher statistics (“cumulants™) of a signal do contain such information. Particular cases of higher order specira
are the third order spectrum, also called the bispectrumn and the fourth order spectrum, trispectrum. The power spectrum
is, in fact a member of the class of higher order spectra, it is @ second order spectrum. The main application examined in
this paper is nonlinear spectral estimation with higher order spectra [1,2].

II- SECOND and HIGHER ORDER STATISTICS

In this section we describe the processing of the input signal with second order statistics (30%) and higher order
statistics (HOS). The 508 methed is based on performing the autocorrelarion (ACF) function of the input signal then
estimating the power spectral density using the parametric spectral estimation techniques (MEM or MUSIC). The ACF
provides a time-domain description of the second order statistics. [f the additive naise and signal are uncorrelated, the
autocorrelation of the signal in the presence of noise is the individual sum of the ACF of the signal and the ACF of the
noise. The ACF tends to cancel the noise component. The seeond order statistics of a signal extracts useful information
from the original signal such that the ACF improves the data adaptive processing methods such as (MEM & MUSIC).

Higher order statistics known as cumuiants {1,2], and their associated Fourier Transform known as polyspectra, not
only reveal amplitude information about a process, but also reveal phase information. This is important because as it is
well known second order statistics (i.e. autocorrelation) are phase blind {1,2]. Cumulants on the other hand are blind to
any kind of a Gaussian process. whereas correlation is not. Consequently, cumulant based methods boost signal-to-
noise ratio when signals are corrupted by Gaussian noise. Higher order statistics are applicable when we are dealing
with non-Gaussian (or, possibly, nonlinear) processes.

The K® order cumulants is defined in terms of the signal joint moment of orders up to K. The second and the third
order cumulants of zero-mean signal x(t), are given by[1,2]:

Cox (1) = Efx(t) x(t+ 1)} (1
Ci (T, 1) = Efx(t) x(t+ 1) x(t+ 1)} )
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Similarly we can define the fourth order cumulants C, (1, 72 %3)[1.2]}. Sometimes we need fourth order cumulants
because if arandom process is symmetrically distributed, then its third-order cumulants is equal zero, hence, for such a
process we must use fourth order cumulants. In addition, in sore specific applications {1,2]. As indicated from equation
(1) it is seen that the second order cumulants Cy, (1) is just the autocorrelation of x(t).

This paper deals with processing of single and multiple emergency signals relayed from the low polar arbit satellitc
using second order statistics (SOS) or second order cumulants C;, (1) which used as a preprocessing method then
applying the (MEM or MUSIC) spectral estimation techniqucs to the data.

III- PARAMETRIC SPECTRAL ESTIMATION TECHNIQUES

The accuracy of the estimation of the input signai is largely dependent on the method employed for processing the
input signals. In the following subsections, nonlinear spectral estimation techniques examined in this paper are reviewed
[3-7].
L1 Maximum Entropy Method (MEM)

The Maximum Entropy Method (MEM) is referred o as an autoregressive (AR) or an all pole spectral estimator.
The problem can be mathematically expressed as finding the real positive value of the spectral estimate Sgf which
maximizes the entropy of the corresponding random process. The power spectral densiry S/} calculated by [3-6]is:

A P(M) 2 (3)
ZB[I + Z a(M,m)e""w”'}

()=

=)

Where:
B is the bandwidth of the signal, T is the sampling time, M is the order of Prediction Ervor Filter (PEF),

P{M) is output power of PEF, and /afM.m)}, m=0.1.2,......M represems the PEF coefficients.
There are three main important parameters affecting the performance of an MEM spectral estimator, these are:

i — Number of input samples available for each instantaneous spectral estimate.
2 ~ M: order of Prediction Error Filter,

3— L: number of instantancous spectral estimate averaged.

The detailed analysis about this algorithm is in [3-6]

1.2 MUltiple SIgnal Classification (MUSIC)
The MUSIC estimate is given by the formula [1, 7]

Rm ',\.‘r('(f) - 5 : ] = : H )
m[ St ln 2]

k=pel

k=pel
Where N is the dimension of the eigenvectors and vy is the &-th eigenvector of the correlation matrix of the input signal.
The integer p is the dimension of the signal subspace (subspace size), The prefix H means hermation (complex
conjugate transpose) so the eigenvectors v, used in the sum correspond to the smatlest eigenvalues and also span the

noise subspace. The vector (/) consists of complex exponentials, so the inner product v¢(f)  Amounts to a Fourier

transform. The second form is preferred for computation because the FFT is computed for each vy and then the squared

magnitudes are summed.
in the eigenvector method, the summation is weighted by the eigenvalues 2, of the correfation matrix {1]:

P.(f)= '\——l—l——’ (3)
Ll 14

baped
The function relies on the SVD matrix decomposition in the signal case, and it uses the eigen analysis for analyzing the
correlation matrix. If SVD is used, the correfation matrix is never explicitly computed, but the singilar values are the

~y for further details see [i]

II1.3- Mathematical analysis Of SNR improvement using SOS

The SOS ¢an help in canceling noise trom signals as follows:-
Consider 3/n) 10 be a noisy observed complex exponential signal (as Fourier series suggests any siznal to be), that

is given by[2, 8, 9]:
y(n)=s(n)+v(n) (6)
L

y(n) =32 ae™" " +v(n)

]
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Where v(n} is white Gaussian noise.

.
The local SNR, is given by SNR, =10 log(|a,| /o))
The second order cumulant is given as follows:
Cary=Ch,+Cy, Where:

C,. (t)=E[s{n)s(n+1)]

L
-3 fafer
=1
C,,(r) =0 28(z)
Where O".z is 1he noise variance. The new SNR (NSNR) is given by:
NSNR, = 10log(la|' /&?)
= 10log(ja,| ) + 10 loglla | / )

2
=101log(a,[') + SNR, (7)
Thus, from Eq.{7) it is clear that applying SOS to the noisy signal enhances its SNR.

II1.4- Proposed Method
This paper suggests two techniques. In this section we are going to summarize these 1wo methods briefly as follows:
- The first proposed method
The first proposed one is based on:
* Performing the second order statistics of the input signal using Eq.(1). As discussed in section HLJ, it is clear
that the SOS improves the SNR as given by Eq.(7).
¢ Applying the MEM or the MUSIC techniques 1o the obtained data to estimate the power spectral densiry
spectrum. Figure (1) shows the simplified block diagram of this method.
2-_The second proposed method
The second proposed method is based on three steps, as shown in Fig.2, which are:

« Performing the coherent time average of the input data. This method consists of the summation of successive
repetitions of a signal in such a way that the time signal reinforces itseif (is coherent) while the noise, if it is
random relative to the oecurrence of the signal, tend to cancel out, Thus, coherent time averaging can be most
useful for signal 1o noise ratic improvement.

* Applying the second order cumulant to the eoherent time averaged output data improves the SNR as diseussed
in section I1L3.

s  Estimating the power spectrum using the MEM or MUSIC rechnigues.

The detection aigorithm of these two proposed techniques are designed and applied for the case of single frequency
signal and multiple frequency signals.

MEM

Or L
MUSIC

O/p

P data”| SOS

Fig.1.1¥ proposed method

/P data | Coherent

— time
average

Fig.1.2" proposed method
IV- RESULTS AND ANALYSIS
This section presents the results of processing single and multiple frequency signais using the two proposed methods.
First, we are geing to give a brief description of the input signal.

IV.1 The Input Signal
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The problem of search and rescue for aircraft in distress has become a significant concern, The emergency signals
can provide both an immediate alert and a homing signal to assist rescue forces in locating the site of distress. The use
of a satellite in low polar orbit might greatly enhance the performance of search and rescue facilities. The main
advantage of this system is that the satellite has a wide field of view and pass covers many thousands of square
kilometers. The emergency signal is detected by an orbiting satellite. A repeater on board the satellite relays the
emergency signal to an earth station where the received signal is analyzed to extract the emergency signal position.

An emergency signal is transmitted from a low power emergency radio transmitter radiating about 100 mw with
amplitude-modulated signal having a carrer frequency of either 121.5 MHz or optionally 243 MHz. The emergency
signals have been processed using a digital band-pass processor implementation. The signal is mixed down to the
frequency range from 0 to 25 kHz, which normally covers the vast majority of input signals. {7, 10].

Consider the received signal comprising more than one emergency signal (/Vs signals) with different carrier frequencies
and different amplitudes, the mathematical representation is given by[7, 10]:

Y
s)= 5 5,()=A[1+m ()]cos@ 1 +6)+ ) ®)

i=]
Where:
Ay is the carrier amplitude of the i signal, f is the carrier frequency of ith signal# is the phase angle of the i signal
and my(): the modulating signal of the i* signal.
The modulating term m (1) can be classified as either sine wave or pulse shaped modulation, In this paper our study is
soncermed with sinusoidal modulation ¢ase The moduiating term m(t) for the sinusoidal moduiated signal can be

tormulated as follows ;

mi(t) = sin{g(t)) (9)

where Gt} =27 fon (v di 110}
he instantaneous frequency fi, ft/ “is given by :
S {£)=1400 - 700 F’_ (1

where T, is the repetition period of the signal. Solving these equations, the emergency signal is given by[10]:

= [ using 2 14001-14000+0. 75 fsin(2 af ) 12
“igure 3 illustrates the sinusoidal modulated emergency signal waveform with normalized frequency = 0.4 and without
ioise. While Fig.4 gives the same input signal with S/N = -5 dB.

vpte: Normalized frequency is defined as: (Sigral frequency / 25000).

V.2 Processing Results using the Maximum Entropy Method (MEM)
1) Single frequency Signal

‘igures (5) and (6) illustrate the MEM spectrum results using MEM filter order 20 and 40 respectively for the input
ignal with normalized frequency 0.4 at S/N = -5 dB. Fram these results it is seen that the MEM filter order does have
n influence on the spectrat performances. At a low MEM filter order, the spectrum resolution is not good. By using a
igh MEM filter order, the width of the main peak can be reduced considerably but giving rise of spurious peaks as
dicated in Fig.(6), which causes false alarms.

low, we are going to examine different methods to improve the detection of the input signal at low S/N.

— First, we consider the preprocessing method based on coherent time average of the input signal. This method
ansists of the summation of successive repetitions of the signal, {(averaging 50 continuous blocks of 256 points in each
iock of the input signal) and then estimating the output averaged data using MEM technigque. Figure (7) gives the
IEM spectrum estimate using this method with MEM filter order equal 20. Figure (8) illustrates the averaged MEM
sectrum with filter order equal 20 also. Thus a significant enhancement on signal detection can be noted using the
sherent time averaging method as indicated in Fig.(8). ’

~ The second method iested in this paper (first proposed method) is used to improve the detection of the input signal

low S/N based on applying the second order statistics. Figure (9) illustrates the spectrum result using second order
inufants and MEM with MEM filter order 20, From these obtained results we note that a great improvement in the
quency resolution is obtained, such as a sharp peak is located at the frequency of the transrnitted signal.

- The third method studied in this paper (second proposed method) is used to improve the detection of the input signal

low SN, Figure (10) illustrates the spectrum result using the second proposed method with MEM filter order 20.
'om this obtained result we note thal a great improvement in the frequency resolution is obtained. such as a verv sharp
-ak is located at the frequency of the transmitted signal.
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(2} Multiple frequency Signals

In this section, we discuss the processing of multiple signals using the parametric techniques (MEM) with higher
order statistics. The swdy, which is given here, is for four signals. The frequencies of these signals are selected
randomly. In this case the signals with continuous phase and all signals contained in the input signal have the same
amplitude. The spectral estimation performance degrades as a result of increasing the number of signals.

Four signals having nornalized frequency 0.2, 0.4, 0.3 and 0.8. Figure(l |) illustrates the time demain representation
of the four input signals without noise, while Fig.{12) depicis the input four signals with noise at 5/N equal —3dB. The
MEM spectrum with MEM filter order equal 20 and 50 are given in Fig.13 and Fig. 14 respectively.

‘From these results it is clear that the main peak for each signal is immersed in the noise, which make the detection
of the mansmitted signals difficult as shown in Fig.13, while the spectrum shown in Fig,14 congested with many
undesirable peaks.

Now, we are going to examine different methods to enhance the spectrum and improve the deteetion of these multiple
signals at fow S/N: (S/N=-5 dB).

- Averaging the time series data of the input four signals (averaging 50 continuous blocks of 256 points in each block)
and then estimating the output averaged data using the MEM with MEM filter order equal 30 gives the spectrum shown
in Fig.(15). Averaging MEM spectrum with filter order equal 20 gives the spectrum shown in Fig.(16). As indicarted in
these figures, a significant enhancement on signal detection can be noted as compared to the results using the above
methed. It is seen that we can identify and detect the main peak for every transmitted emergency signals.

2 — Applying the (first proposed method) based on seeond order statistics SOS with MEM gives the estimate spectrum
shown in Fig. (17} using MEM filter order equal 20. By using this technique it is seen that. this proposed method
improves the detection ol the main signal peak in noise, and reduces the undesired sideband peaks. A very sham peak
for each transmitted signal can be detected easily with very minimum frequency error.

3 - Applying the (second proposed method) to improve the detection of the inputsignal at low S/N. Figure (18}
illustrates the power spectrum estimate result using this proposed method with MEM filter order equal 20, By using this
technique it is seen that, this proposed method improves the detection of the main signal peak in noise. and reduces the
undesired sideband peaks. A very sharp peak for each transmitted signals can be derected easily with very minimum
frequency error. In addition it reduces the required filter order for proper detection of the input signals,

IV.3 Processing resufts using MUSIC technique
! — Single frequency signal
the main important parameter affect the MUSIC technique performance is the subspace size, parameter [1]. To examine
this effect, first, applying the MUSIC technique with varying the subspace size on the Input signal at /N = -5 dB.
Figures (19) and (20) illustrate the MUSIC spectrum resulls using subspace size of 10 and 15 respectively. From these
results it is clear that as subspace size increases, the spectrum is enhanced and the input signal can be detected easily.

To improve the signal detectability at low $/N using smaller subspace size, we examine the following methods:
! - Using the coherent time domain averaging of (50 times X 256 point in each block) and processing the obtained data
using MUSIC ‘with subspace size of 10 give the spectrum shown in Fig.(21} . From this result. it is clear that the
speetrum is enhanced such as the undesired side peaks levels are reduced and gives sharp peak located at the transmitted
input signat frequency.
2 - The second method given here which is based on applying the first proposed method gives the spectrum illustrated
in Fig.(22) for subspace of I0. It is noted from these results that a very sharp peak is detected and located at the signal
frequency of the input signal and a very high frequency resolution spectrum is obtained with minimum frequency error.
approximately lending to zero. In addition the processing time is reduced.
(2) Multiple frequency Signals
In most practical sitations, the received signal comprises more than one signal due to false alarms, which may mask
the signal from a platform in distress. With multiple sidebands, it is obvious that the signal band is extremely congested.
Figures (23) and (24) illustrate the MUSIC proeessing resulis for subspace size of 10 and |5 respectively. To improve
the multiple signal deteetability, we consider:
I- Processing the multiple input signal data using the coherent time average of {50 times X 256 points in each block)
with subspace size of 5 gives the spectrum depieted in Fig.(25). As indicated in this figure, we note that the width of
the main peak of each transmitted signal is broadened and located at the signal frequency component for each signal.
2. Applying the second proposed method gives the spectrum illustrated in Fig. (26) for subspace size of 13. Thus, it is
seen from this result that the detection of multiple signals at low S/N is improved very much as indicated in Fig.(26).
In addition. the second proposed method produces; high frequency resolution spectrum, very sharp peak with minimum
frequency error. The transmitted emergency signal can be detected easily with very small processing lime.

V.4 Mathematical analysis of SNR improvement using HOS
For the noisy signal ¥(n) given by Eq.(6),where y(n) and v(n, are independent; then Irom the main properties of
cumulants (2. 8, 9]:
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Ck,y(f] 2 T2 300y Tt ):CIM (T[ 3 T2 penny rfl-l) + Ck.” (3'[ 12 50ney Tk—!) (13)
1f v{n} is Gaussian (colored or white) and k 2 3, then
CiplTt T2 ooy Tt J=Cs (T3 T2 ey Tt ) (14)

This makes the higher order statistics more rabust to additive measurements noise than correlation, even if
that noise is colored. In addition, cumulants can draw non-Gaussian signals out of Gaussian noise, thereby
boosting their signal to noise ratio.

t. The bispectrum of a single emergency signal with normalized frequency (0.4) with noise (SNR= -5dB) is
indicated in Fig.(27), while the bispectrum of the output signal is depicted in Fig. (28).

2. The bispectrum of four emergency signals with normalized frequencies (0.2, 0.4, 0.5, 0.8) with noise
(SNR= -5dB) in depicted in Fig.{(29) while the bispectrum of the output signal is depicted in Fig. (30).
From these figures and equations.(13)and(14), it is seen that the HOS cancel out the additive noise which
consequently improve the signal delectability.

Thas from the above study we conclude that:

o Low MEM order of PEF produces a broad peak with large frequency error for the unalysis of the multiple
emergency signals.

e The sharpness of the spectral peak increases with the prediction error filter order M. While for large value of PEF
order M, the estimated spectrum is much more accurate.

o With small subspace size, MUSIC gives not accurate spectrum, while large values of subspoce size produce good
spectrum bul with more compulational lime.

o Averaging the time series data of input signals improves the signal to noise ratio that consequently impraves the
signal detectability.

o The praposed methads based on using second order statistics or applying the second order stutistics of the cohereat
time averaged signal data and estimating the power spectrum using the (MEM & MUSIC} suppress the Gaussian
noise of power spectrum. A sharp peak is detected and located ar the signal-normalized frequency of the
transmitied signal with minimum frequency error, using lower MEM filter order and smail subspace size.

CONCLUTIONS

Two proposed tlechniques are given in this paper. These two methods are based on using second order statistics (second
order cumulants) and on using the parametric spectral estimation techniques (MEM and MUSIC). By using these
proposed methods we can suppress the additive Gaussian noise of the power spectrum and characterize the main
properties of the transmitted signals. It produces a very high frequency resolution of the estimated power spectrum
using lower order of MEM and small subspace size of MUSIC techniques. These methods reduce the proeessing time
with minimum frequency error. HOS cancel out the additive noise, which consequently improve the signal

delectabiiity.
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Fig. 20(MUSIC spectrum, 5=13)

Fig.24(MUSIC spectrum, «=| 5

Fig.22(508, MUSIC specirum, 5=10)
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Fig.23(MUSIC spectrum. 5=10}
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Fig.21{coherent time Avg.. MUSIC spectrum, 5=10)
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Fig.26(coherent ume Ave 08 . MUSIC spectrum. 5=15)
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bispectrum of ELT +noise with SINV=3elb o/p bispectrum of ELT




