Menoufiya University

Faculty of Engineering

Shebin El- Kom

Final First Semester Examination

Academic Year: 2013-2014

Date: 12/1/2014

Minufiya University

Dept.: Mechanical Power Eng.

Year : First

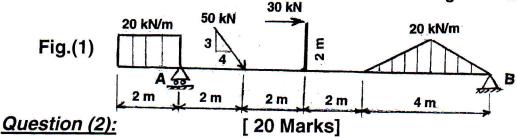
Subject: Applied Mechanics

Code: PRE 118
Time Allowed: 3 hours
Total Marks: 75 Marks

Allowed Tables and Charts: None -

 $(take g_0 = 9.8 \text{ m/s}^2)$

Examiner: Dr/ Mohamed Hesham Belal


Answer All the Following Questions:

Question (1):

[15 Marks]

For the shown loaded beam in Fig.(1): 1)- <u>Draw</u> the internal action diagrams, and

2)- Find the values and locations of the maximum shearing force and bending moment.

- (a) [8 marks]—The 3000 kg anvil A for a drop forge is mounted on a nest of heavy coil springs having a combined stiffness of 2.8 MN/m. The 600 kg hammer B falls 500 mm from rest as shown in Fig.(3) and strikes the anvil which suffers a maximum deflection of 24 mm from its equilibrium position. <u>Determine:</u> (1)- the height (h) of rebound of the hammer, (2)- the coefficient of restitution (e) which applied, and
 - (3)- the percentage loss of kinetic energy due to the impact.
- (b) [12 marks] An artificial satellite is launched in a direction parallel to the surface of the earth from a position (A) at an altitude h₀. The trajectory of the satellite is elliptical orbit with maximum altitude h₁ at the position (B) as shown in Fig.(4). At the position (B) set of auxiliary rockets are fired to increase its velocity and set it in a parabolic orbit.

Given: $h_0 = 1.6 \times 10^6$ m, $h_1 = 25.6 \times 10^6$ m, $R = 6.4 \times 10^6$ m.

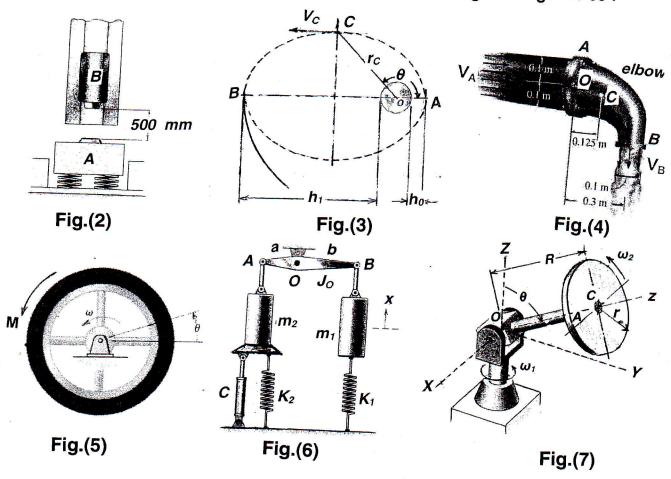
Determine: (1)- the eccentricity and the semi latus rectum of the elliptical orbit,

- (2)- the periodic time of the elliptical orbit, (3)- the distance from the earth's center and the velocity of the satellite in the elliptical orbit at the position (C), and
- (4)- the sudden change in the velocity at the position (B).

Question (3):

[15 Marks]

(a) [8 marks]— The water flow enters the elbow through the fixed pipe joint at A at the rate of 0.2 m³/s and then discharged from the outlet at B as shown in Fig.(4). The static gauge pressure at A is 100 kPa and the density of water is 1000 kg/m³. The water-filled elbow has a mass of 20 kg and center of mass at C. The diameter of the inlet pipe at A is 0.2 m, and the diameter of the outlet at B is 0.1 m.


<u>Determine</u> the horizontal and vertical force reactions and the moment reaction on the fixed pipe joint at A.

- (b) [7 marks] A horizontal shaft with a flywheel of mass 32 kg and a radius of gyration of 0.5 m about its mass center starts to rotate under the action of a driving moment $M = M_0 C\theta$, as shown in Fig.(5), where the constants $M_0 = 1000$ N.m and C = 8 N.m/rad. (1)- <u>Derive</u> the equation of motion and then the relationship between the angular velocity and angular displacement ($\omega \theta$ relation),
- (2)- Calculate the number of revolutions executed by the flywheel before stopping.

Question (4):

[25 Marks]

- (a) [13 marks] The vibratory system shown in Fig.(6) has the natural frequency equal 30 rad/s and the following data: $m_1 = 10$ kg, $m_2 = 16$ kg, $J_0 = 6.4$ kg. m^2 , a = 40 cm, b = 80 cm, $k_1 = 2k_2$. When the system was displaced and released, the amplitude of any cycle decreases to 0.25 of the value of previous cycle.
 - (1)- <u>Find</u> the values of unknowns C, k_1 and k_2 , (2)- <u>Find</u> the periodic time,
 - (3)- When the mass m₁ is subjected to a harmonic force: F(t) = 540 sin 60t N, write down the equation of motion, and determine the steady state response.
- (b) [12 marks] The thin circular disk of mass m=2 kg and radius r=20 cm is mounted on a shaft with length R=50 cm. The disk rotates about its own z-axis with a constant angular velocity $\omega_2=30$ rad/s. Simultaneously, the frame is rotating about the Z-axis at constant angular velocity $\omega_1=12$ rad/s with a fixed angle $\theta=60^{\circ}$ as shown in Fig.(7). Axis z has the momentary orientation above Y-axis of the fixed axes X-Y-Z. Determine: (1)- the angular velocity and angular acceleration of the disk,
- (2)-the velocity and acceleration of point A on the rim of the disk,
- (3)-the total reaction at the support of the shaft, and
- (4)- the variation in the dynamic reaction if the neutation angle changed to 90°.

With my best wishes

This exam measure the following ILOs												
Question No.	Q1	Q2-a	Q3-b	Q4-b		Q2-a		O4-a	01	O2-b	O3-a	04-2
GI AN	a-1	a-4	a-1	a-4	b-2	b-7	b-7	b-2	C1	C1	C1	C1
Skills	Knowledge & Understand				Intellectual				Professional			