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Laminar free convection from an elliptic tube placed in
a Micropolar fluid with vertical plate
as a special case
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Abstract: - o this paper laminar free convection heat transler from a horizontal isothermal elliptic
tube placed in a miciopolar uid with its major axis vertical is investigated. The governing cqualions
based on the conscrvation of mass, lincar momentum, angular momentum and energy are numerically
solved using the Fourier Spectrat method. The main controlling parameters. beside the material
paramcters of the micropoiar Tuid, arc the Rayleigh number, the Prandt! number and the ¢lliptic
scction axis ratio The micropolar Muid parameters are the vortex viscosity, micro-inertia density and
spin gradient viscosity. The results, which were obtained for a range of these parameters, were carricd
oul at two axis ratios of 0.5 and 0.025. The axis ratio of 0.025 approximates the geometry of the
special casc of vertical flat plate.  The results lor vertical plate placed in Newtonian fluid arc
comparcd with the relevant results in the literature and very good agreement was obtained. The study
has shown that the vortex viscosity is the most influencing material parameter on heat transfer ratc.
The study showed that as ihe vortex viscosity increases the heat transfer rate decreases.

Keywords: Micropolar fluid — fiee convectioon - microrotation - elliptic fube

1. Introduction clements arc taken into account. Such fluids

The theory of micropolar fluids has can support surface and body couples which
been proposed by Eringen |1]. In this theory are not present in the theory ol Newtonian
the microscopic clfects arising from local fluids. Micropolar {luids arc believed to be
structure and micromotions of the [luid suceessful in dCSCl'ibil]g the bebavior of

Accepled November 27, 2005.



M.2 Mahfouz F. M.

cxolic lubricants, polymeric {luids, liquid
crystals, animal blood, suspension solutions
and hcterogencous mixtures such as [erro
liquids, most slurrics and some liquids with
polymer additives. Eringen [2] [urther
extended the micropolar fluid theory to
include the thermal cffects.

The problem of the buoyancy driven fluid
flow adjacent 1o cylindrical body has long
received great attention of the rescarchers,
for it rcpresents a fundamental problem as
well as it has many practical applications.
These applications include nuclear reactors,
heat exchangers, hot wires, cooling of
clectronic devices, stcam pipes and many
others. Special interest has been paid to the
cylindrical tube of clliptic cross-scetion duc
to its [lexibility to assumc a number of
clliptic scctions beside the two special
extreme cases of circular cylinder ( when
axis ratio is onc) and flat plaic when axis
ratio is zero) . The axis ratio is the ratio of
minor axis 1o iajor axis of the cllipse. The
works [3-6] have considered the problem of
natural convection from clliptic tubes to
surrounding Newtonian fluids.

Most of the aforementioned studies have
mainly considercd the approximate solutions
based on simplified boundary layer
cquations. Such solutions neglect the
difTusion { momentum and thermal ) in main
flow dircction which delinitely results in
inaccuracy in the stmulation cspecially for
the low velocity buoyancy driven flow
where the ditfusion in the flow direction is
significant. Badr and Shamsher [7] and Badr
[8] have solved the full governing equations
to analyzc the natural convection from
clliptic tubes placed in Newtonian fluids.
Badr and Shamsher [7] considered the case
of the tube major axis vertical while Badr
[8] considered the case of tube at diflcrent
oricutations.

Previous studics of convective heat
transfer in micropolar [luids have focused
mainly on rclatively simple gcometry such
as flat phates, circular eylinders and simple
curved surfaces [9-14]. Most of these

studics were mainly rclated o foreed
convection problems and/or were based on
the numcrical solution of simplificd
(boundary layer) governing equations. There
were only a few attempts (o investigate the
casc ol natural convection from an elliptic
cylinder placed in a micropolar {luid.
Among thesc attempts were those made by
Bhattacharyya and Pop [15] and Mahfouz
[16]. Bhattacharyya and Pop solved the
boundary laycr cquations to investigate the
stecady  natural  convection  from  an
isothcrmal clliptic tube with its major axis
cither horizontal or vertical. They prescnted
results for local Nussell number along with
velocity and temperature  [iclds. While
Mahlouz solved the [ull governing cquation
without boundary laycr simplifications to
investigate the transient natural convection
from an isothcrmal clliptic tube with its
major axis horizontal.

The purpose of this study is to investigalc
the casc of natural convection from elliptic
tube with major axis vertical and placed in a
micropolar fluid with emphasis on the
special case of vertical plate. Attention will
be paid to this latier case for two rcasons.
The first is that it would be a good modecl
problem for testing the accuracy of the
method of solution in case of Newtonian
fluid. The sccond it would be convenient
herein to provide results for this casc which
in the author belicf has been given scarce or

cven no attention in case of micropolar
fuids.

Nomenclature

« length of semi-major axis

Ar axis ratio (=b/a)

b length of scmi-minor axis

¢ cllipse cecentricity (= V1-4r?)

fa Fourier cocflicicnt

T, buoyancy forec

g gravitational acceleration

Za Fourier coelTicient

H Jacobian of transtormation matrix

H, ,H, TFourier cocMTicients
k thermal conductivity



Mansoura Engincering Journal, (MEJ), Vol. 30, No. 4, December 2005. M.3
K, vorlex viscosity The tube surface temperature is suddenly
i micro-tnertia density increased to T, and accordingly giving the
J dimensionless parameter signal lo buoyancy driven Now to start. The

characterizes micro-incrtia density tube Jength is assumed long enough to
M dimensionless microratation negleet the end elfeets and to consider the

Nu, -local Nusselt numbers
Nu  average Nussclt numbers
Pr Prandt! numbcer (= u/ pa )

PeQ)(T, ~T,)

Ra Rayleigh humber =

VoY
| dimensionless time
T temperature
X',y Cartesian coordinates
Y the distance from the tube surface

. . —b
along minor axis (=—}-}-—— Ra %%
a

Greek symbols

o thermal difTusivity

Ji] cocflicient of thermal expansion

A dimensionless parameter
characicrizes vortex viscosily

@ dimensionless temperature

1. & clliptical coordinates

Y spin gradicnt viscosity

! viscosily coeflicient.

A dimensionless parameter

characlerizes spin gradient viscosity
p density

@ component of microrotation vector
in x', y' planc

T lime

' strcam functions

- vorticily

Subscripts

5 at the tube surflacc

o0 at infinite distance from the tube
surface

2. The governing cquations

Consider a horizontal straight clliptic
tube with its major axis vertical and placed
in an initially quiescent micropolar fluid at
temperature T.,.. The clliptic tube geomelry,
with major axis of 2a and minor axis of 2b,
and coordinates system are shown in Fig. 1.

resulting flow and thermatl liclds 1o be two
dimensional.  The effect of temperature
variation on fluid properlies is considered
negligible except for the buoyancy foree
term  in the momenlum  cquation
{(Boussinesqu approximation). The viscous
dissipation and coupling between
microrotation and conduction heat flux are
neglected. Under these assumptions, the
conscrvation cquations of mass, linear
momentum , angular inomentum and cnergy
in terms of the vorticity, siream function,
microrotation  and temperature read the
following;:

Fig. 1 Tubc geometry and coordinale
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£C+@fz -.f"”_”'_ir; = ._k_vlr 4)
o0 & &3 pc,
2 b4
wherc V= 6'2 —(?'—2
' oy
r is the time, pis the density, i is the
viscosity coefficient, k is the thermal

conductivity and ¢, is the specific heat. K, j
and y are the vortex viscosity, miero-inertia

density and spin-gradient viscosity. £"is the
vorticity, y'is the stream function, T is the

temperature and @ is the component of
microrotation vector whosc direction of
rotation is in  the x'-y’ plane.
Fo=pg -T,) and F_ =0 are the

components of the buoyancy force , where
[ is the coeflicient of thermal expansion of

the fluid.
The boundary conditions are mainly the no-
slip, impermeability and no-spin conditions
on the tube surface and the stagnant ambient
conditions very far away from it.
-on the tube surface
Ay’ Sy’
=20, X o, 12T
1z @
and =0 (5a)
-far away {rom the tube surface
W 0, X Lo1-=1,
a' &
and w—0 (5b)

Now it is morc convenient to use the
following dimensionless variables:

xl F ra ’
x:—’ y:-)i—, :—2—-, [f/_—_ﬂ_’
[ [ a o
2 2 -
Ty VIR N Yy
a M a
1=t and g=dla (6)
TH -7,
Using elliptic coordinates &, #  such that

x =ccosh(&)cos(r), y =csinsh(&)sin(y),
Egs. (1)-(4) can now be written in terms of
the above dimensionless variables as :

H f =Pr(l+A) V¢ +Pr A VM +
cRaPr cosh& sinn@—+sinh§ cosna—¢
o& on
+ él_”i _@i (7)
X d & X
H{ -V =0 (8)
Hé’M =@§M -é/iéM +Pr A VM
a & a 4 K
—HPr A +2M)1J (9)
H@:V2¢+@._‘aﬁ oo (10)
a ok on  on d
where H =c’(cosh’¢ —cos’n) is the
Jacobian of transformation,

Ra = gppRa)' (T, -T,)/ pex is the

Rayleigh number and is the Prandtl number.
14
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Fig. 2 Local Nu distribution and comparison
with  the corresponding  results of Badr [8]
for the casc of Newtonian fluid

The boundary conditions Eq. (5) can now
be expressed as:

-on  the tube  surface (£=¢&))
oy oy
= —_—= 0 , —_— = 0 . M = 0
v & an
and ¢ =1 (11a)
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- very far away from the tube surlace

(& = o), ffli—)O, @—»0, M->0
o an
and ¢ -0 (1lb)

where & =tanh"'Ar dcfines the cllipse

surface. The temperature of the stagnant
fluid around the tube at times t <Qis T,
(¢ = 0) which is the same as that of the tube
surface. At the start of computations (¢ =0)
the tubc surface assumes a  sudden
temperature increase from T, to T (¢ =1),
and [rom that moment the time development
ol both flow and thermal ficlds commences.

3. The Method of Solution

The method used for solving the
governing cquations (7)-(10) to obtain the
time development of both velocity and
temperature fields  is based  on
approximating the siream function, vortieity,
microrolation and temperature using Fouricr
scries cxpansion. The approach is similar to
that uscd by Mahfouz and Badr [17,18]. The
stream  lunetion vorticily
microrotation M and temperature ¢ arc now
approximated as

N
Y= Zf"((f,!)sin () n=1,2. N (12a)

n=j

= ig.,(e‘,!) sin(117)

(12b)
M= irn(;’,r) sin (i) (12¢)
¢g=H 12+ Zfln(gr,l})COS(IH]) (12d)

where N ois the number of terms in the
Fourier serics. The [unctions f;, gn, 1y, Ho
and H, arc Fourier cocfficients and all arc
dependent on & and t and can be deduced
similarly to thosc in Mahlouz and Badr [17].
The rest of the details of the method of
solution is more or less similar to that in
Rels. [16-19] and will not be repeated here
for the sake of brevity.

Ra=1000, J=1, i=)

Fig 4 Stcady patterns ol streamlines (right)
and  isotherms (lelt) for casc of Ra=1000,
A=1, A=land J=1.

The hcat transfer results  are  usually
expressed m terms of Nusselt number. The
local surfice Nusselt number is defined as
N = 244 (13)
KT-T,)
where q = -k(Fl/&,), , ¢ is the rate of

heat transfer per unit area , S, is the normal
direction to the tube surface. From the above
definttions the Nu can be expressed in terms
of Fourier coefficients Hyg and H, as
H=N
Nu = —:—1—{% +2 Z—aﬂ’lcos(m})] (14}
JH L & o :

n=|

The average surlace Nussclt number can be
cxpressed as
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— | _ 2naf GH,
Nit :T)E NudP—-——P-—[ % ] (15)

where P is the perimeter of the elliptic
scclion.

10

Ra=1000, Pr=7 =1
Ar=0.5, J=1

0

180 210 240 270 300 330 360
n

Fig. 5 Stcady state local Nusselt number

distibution

4. Results and Discussion

In order to solve thc  discretized
governing  cquations  along  with  the
boundary conditions, a seriecs ol runs has
been carried out on the compuler program
that has been developed and tailored for the
present problem. The program has been fed
with the main influencing controlling
parameters that aflect both [low and thermal
ficlds. These parameters, as can be scen
from the governing equations, arc Rayleigh
number Ra, Prandtl number Pr, axis ratio Ar
and the material parameters 4, Aand J. For
the sake of brevity only the effect of Ra, A
and J are considered while Pr, and Aarc
fixed at 7 and 1, respectively. The
calculations are carried out in part for the
case of clliptic tube of axis ratio of 0.5 and
in part for the special case of vertical plate
where axis ralio approaches zero. The
Raylcigh number Ra, is considered in its
moderate range up to 10°. The material
parameter A, which characterizes vortex
viscosily 1s considered in the range from 0

to 10 while the matcrial parameter J. which
characicrizes  micro-incrtia  density, s
considered in the range from 0.1 to 10.
Thesc values [or malerial parameters satisfy
the thermodynamics restrictions given by
Eringen [2]. The values considered hcre for
controlling parameters may be changed
whenever comparison with others is
concerned.

4.1 Accuracy of the numerical solution

The numerical simulations were carried
out only alter validating the method of
solution and numerical technique. The first
problem considered for validation was the
casc of natural convection from circular
cylinder placed in a micropolar fluid. The
problem has been separately investigated by
Mahlouz [19]. In that work the author used
the same method of solution in handling the
Tull governing equations which were written
in polar coordinates. To compare the present
results with those for circular cylinder, the
circular geometry has to be generated from
the clliptic geometry by sciting axis ratio to
onc. Sclting axis ratio to one leads 1o
ovcrllow crrors in the present compuler
code. To circumvent this problem (he axis
ratio was sct 1o 0.998 which is very close 1o
onc. The comparisons were carried out after
maiching the corresponding  controlling
paramecters and boundary conditions. The
test runs have produced results ( not shown
here ) very close or cven identical to those
in Mahfouz [19]. This confidently ruled out
any possibility of errors in handling either
the governing  cquations or  their
transformation to clliptic coordinates and
conlirmed the accuracy of the method of
solution as well,

The second problem econsidered lor
comparison was the case of natural
convection from elliptic tube placed in a
Ncwtonian {luid with its major axis vertieal
considcred by Badr [8]. The present results
for distribution of the steady state local
Nusseltl number along the elliplic tube
surface at Ra=1000, Pr=0.7 and at three axis
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ratios, namely, 0.4, 0.6 and 0.98 are shown
in Tig. 2 logether with the corresponding
numerical results of Badr. It can be secn
from the figure that the present results are in
very good agrcement with those of Badr for
the three axis ratios with maximum
difference not cxeceding 3 %. The above
comparisons and the comparisons that will
be provided wherever convenient, confirm
the high accuracy of the numerical solution.

120
Ra=1000. Pr=7 =i\
100 Ar=0.5, J=1
i
A=(}
80‘1 A=
~ls _J ------- A=S
60
........... A=10
40 -
201 _____ "”-—.‘ """"""" ““‘\-
0+ T T T

180 210 240 270 300 330 360
0
Fig. 6 Steady state surface

distibution

vorticily

4.2 Results for elliptic tube of Ar=0.5

Fig. 3 shows the time variation of
surfacc average Nusselt number Nu , for the
casc of Ra=1000, and at diffcrent values of
dimensionless vortex viscosity A= 0, 1, 2
and 5. The figure clearly shows that the

gencral variation of Nuis similar to that for

Newtonian fluids (A = 0). That is Nu
evolves in a sequence of pure conductive,
transient convective and steady convective
processes. The pure conductive process
prevails immediately after the tube surface
temperaturc  is  increased. The high
tcmperature  gradient cstablished near the
tube surface results in high hcat flux and so

high values of Nu . In this carly time stages

and as a result of quick developing of
thermal boundary layer a quick decrease in

M. 7

Nu occurs, reaching to a minimum value at
a certain short time. Beyond  this time, the
buoyancy force becomes more eflective,
causing transient convective process. This
transition as shown in the figurc takes a

form of overshoot in  Nu. Such a
phenomenon has been depicted and further
explained for the relevant natural convection
problems [19-23]. At late times the
convective process gradually prevails with
stcady rates of heat transfer and so steady

Nu gradually approach.

1.0
) Ra=1000, Pr=7 =1
) Ar=0.5, J=1
Oa N )? 1]:27[)
— A=
08 -1 A=1
¢ BN A=S
0.4 1 ..':.“. ............ A=10
o.zﬁ
0.0 e
0 2 6 8

-<. S

Fig. 7 Steady state temperature variation
along minor  axis of the tube

In addition, Fig. 3

time or the steady Nu in the case of
micropolar fluids (A =1, 2, 5) is lower than
that for Newtonian fluid ( A=0 ). This
decrease may be attributed, as explained in
Hsu et al. [24], to the increase of the flow
viscosity as a result of vortex viscosity.
Increasing of flow viscosity weakens the
flow convection currents and increases the
thickness of the thermal boundary layer
which in turn decreases heat transfer rates (

shows that the late

and so Nu). Since the conduction mode of
heat transfer is precdominant in the initial
stages the vortex viscosity has no role and

Nufor micropolar fluid and that for
Newtonian Tuid arc  identical. As the
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convection domination mode slarts the
vortex viscosily of micropolar fluid
cnhances the flow viscosity and so decreases
thc heat transfer rate. The larger the value of
A the larger the flow viscosity and the lower

the value of steady state Nu.

A typical example for steady flow and
thermal fields at late time is shown in Fig. 4.
The figure shows the flow field, in terms of
streamlines, and the thermal field, in terms
of isotherms, for the case of Ra=1000, A=1,
A=1 and J=|. Since these fields are
symmetrical about the vertical axis, only
one half of each field is considered. The
figure shows condensed isotherms close the
bottommost point which declares  high
tempcrature gradient and so high heat rate in
that region while the streamlines are more
condensed close to the topmost region
dcclaring high velocity and so high surface
vorticity in that region.

14

12 ] Ra=1000, Pr=7. a=10 [
; =270

\ : varticity, -¢
8 u -

= | femenem- microrotation, M
. 64— :
3 .
! | |
! |

2 | | -
0 10 20 a0 40
YI'
Fig. 8 Steady state vorticity and

microrotation variation along minor axis

The steady state values of Nufor the
cases considered in this study are listed in
Table 1. The Table shows the effect of
Rayleigh number Ra, and the material
parameters A and J of micropolar fluid on
the steady state average Nusselt number,
Nu . It can be seen that the effect of Ra on

steady state Nu is quite clear, that is at any

fixed value of fluid material parameters as

Ra increases the Nu increases. This is quite
expected since increasing of Ra leads to
increasing of convection currents and so
increasing the heat transfer rate. Also, it can
be seen that as the material parameter A

increases at any fixed value of Ra the Nu
decreases. The table also shows that at
fixed values of Ra, and A the matcrial
parameter J has almost ncgligible effects on

the Nu in the range considered for the
parameters. So, it can bc inferred [rom
Table 1 that the vortex viscosity is the most
influencing material parameter on both flow
and thermal fields.

Table 1 Effect of Ra and material
parameters A and J on stcady state average
Nusselt number .

Ar Ra A J Nu

------ 4.03
[ 0.1 | 3.66
5 0.1 | 3.23
10 | 01 | 2.98

. 1 1 3.63
10 5 1 3.11

10 1 2.87

1 10 | 3.65

5 10 | 3.08

10 10 | 2.78

L N [ |— 6.55

1 0.1 5.79
5 0.1 4.93
10 0.1 4.56

10° 1 i 5.77
3 T | 4.79
10 1 | 438
1 10 | 5.79

5 10 4.81
10 10 4.35
...... refers to a Newtonian fluid

The steady state local Nusselt number
distributions at Ra =1000 and at different
values of dimensionless vortex viscosity are
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shown in Fig. 5. Sincc the thermal field is
symimctrical about the vertical axis, only
onc-half of Nu distribution is shown. It can
be scen that Nu is maximum at the
bottommost point 7 =180 and minimum at
the topmost point 5 =360 for all values of

A, though it is smaller for bigger values of
A. It can be also observed that as #n
increases from the bottommost point toward
the topmost point, the Nu decreases til]
almost point (/7 =240), and keeps almost
constant up 1o (7=300) then
decreases, rcaching its minimum at the
topmost point. The figurc clearly shows that,
at any surface potnt Nu decrcases as A
incrcases  which  accordingly  means

potnt

decreasing of stcady Nuw as A increascs as
shown in Table 1.

Fig. 6 shows the surface vorlicity
distribution for the samie above case and for
the same half of the surface. The vorticity
distribution over the other half would have
exactly the same values but with negative
signs. The figure shows that the surface
vorticity at any fixed value of A increases
rapidly {rom zero at bottommost point
(n7=180) up to 5 =210. Then the surface

vorticity continues increasing but  with
smaller rate till reaching its maximum value
at almost 1n =330 and then shaiply
decreases (o zero al  topmost  point
{17 =360). The figurc also shows that as A
increase the surface vorticity decreases at all
points of the tube surface . Decreasing of
surlace  vorticity with  increasing of
A reflects the deercasc of velocity gradients
at the tube surface which reflects in turn the
weakness in the flow convection currents.
The weaker the flow currents the smaller the
heat flux (and so Nu).

Fig. 7 shows the temperature variation
along the extension of the cllipse minor axis
(17 = 270) for the casc of Ra = 1000, J=1 and
at different values of dimensionless vortex

viscosity, A. It can be scen that the fluid
temperature decays with distance from tube

surface till it reaches eventually the stagnant
fluid temperature (i.c ¢ =0). Also. the

figurc clearly shows that as A increuses the
temperature gradient at the tube surfacc
decrecases and accordingly local heat transfer
dcereases which in turn means a deerease in
Nu as can be secn in Fig. 5.

20
Ra=1000, Pr=7.0
{ Flat plate (Ar=0.025)
16
A=0.0
12W — -~ A=0S5
—_ W ---------- A=2.0
Nu }
8df = TT--- A=5.0
4 J X e LTI LT
0"““ L T — —T

0.0 03 0.6 09 1.2 1.5

Fig. 9 The time devclopment of Nutin case
of vertical flat plate

Table 2 Effcet of Ra, A and J on steady state
Nu Jor vertical flat plate

Ra A J ‘Nu
e | e 14232
L 05 | 01 | 4.021
1101 | 3.874
2 | 0.1 3.694 |
5 104 3.407
0.5 1 4.021
1000 [ 1 3.859
2 L | 3.643
BE | 3.304 |
05 | 10 | 4030 |
1.0 | 10 3.876
20 | 10 | 3.662
50 1 10 [ 3.281

IFig. 8 shows the steady state variation of
both vorticity and microrotation along the
minor axis of the tube for the casc of
Ra=1000, J=l and A=10. The figure
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shows that the values of both vorlticity and
microrotation are significant in the necarby
rcgion of the tube ( in the boundary layer
region ) and almost negligible elsewhere
along the axis extension. It can also be
inferred that the direction of rotation of both
mean flow and fluid elements along the
minor axis is the same. The mean flow
rotation is represented by vorticity while
fluid elements rotation is represented by the
microrotation. Moreover, the point of zero
vorticity and zero microrotation or the point
at which the mean flow and fluid elements
change direction of rotaion is the same for
both of them. The consisitency of this result
with the logical exepectation from one side
supports the valdity of the micropolar fluid
model devcloped by Eringin [1] and from
the other side supports the validaty and
accuracy of the present numerical technique.

O

Fig 10 Steady patterns of streamlines (right)
and isotherms (left) for case of Ra=1000,
A=1, A=5and J=1.

4.3 Results for vertical flat plate

In the following the natural convection
from vertical plate is considered. This case
can be obtained by setting axis ratio Ar, to
zero in the present calculation. Setting Ar=0,
though produces no errors in computer code,
means that the vertical plate has no
thickness which physically unrealistic. The
flat plate must have a thickness, no matter
how small it is, therefore, in the present
calculation the axis ratio of 0.025 has been

considered as a good approximation for the
flat plate case. In that regard Raithby and
Hollands [4] have pointed out that near flat
plate limit Ar < 0.1 there was almost no
dependence of heat transfer on axis ratio.
Fig. 9 shows the time variation of

Nufor the case of vertical {lat plate,
Generally, it can be inferred from the figure
that the time development of both flow and
thermal fields in the case of vertical plate is
more or less similar to that for the case of
Ar=0.5. That is immediately after the
temperature of the plate surface is raised, a
temperature gradient is established within
the fluid layer adjacent to the plate surface,
causing predomination of conduction mode
of heat transfcr with higher rates of heat

transfer ( and so Nu) . At this carly time
stages the newborn buoyancy force causes
the commencement of fluid motion with
rapid increase of thermal layer and so rapid

decrease in Nu. As the time goes, the
buoyancy—induced motion intensifies with
gradual transition o convection mode
domination heat transfer. This transition
takes a form of overshoot in heat transfer (

i,e in Nu). At late times, the convection
mode dominates and the flow and thermal
fields in the vicinity of the plate surface
gradually tend to be almost stecady. The
steadiness in the nearby flow and thermal
fields at late time leads to steady rates of
heat transfer. In addition, the figure clearly
shows that as A increases the late time or

steady state value for Nu decreases.

The steady state values for average
surface Nusselt number for the case of
vertical flat plate in case of microloar fluid
are listed in Table 2 for the selected value of
Ra of 1000. A quick inspection of Table 2
and Table | for Ra=1000 shows that for the

same material parameters the Nuvalues for
flat plate are higher than those for elliptic
tubes, giving an indication of increasing
Nuas Ar decreases. Decreasing of Nuas
Ar decreases has been reported in previous
works for Newtonian fluids (see Badr [8]).
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Table 2 again confirms the fact that as A
incrcases the Nu decreases and confirms
also that the parameter J has insignificant
effect on hcat transfer as compared with the
parameter A.

J oo

L ”__._..__._‘
s ~
~
~
.
\
L A}

Fig 11 Steady patterns of vorticity (right)
and microrotaion (left) patterns for case of
Ra=1000, A=1, A=35and I=1.

Present (A=)
- -@- - Empirical Corr. [25)

- - - Thin layer analysis {4]
Thick layer analysis (4]

DE+0 2E+3 4E+3 6E+3  B8E+3 1E+4
Ra

Fig. 12 Variation of Nuwith Ra and

comparison with the empirical correlation of
[4] and [25]

The flow and thermal ficlds in case of
free convection from (he flat plate at late
time is shown in Fig. 10. The figure shows
the flow ficld, in terms of streamlines, and
the thermal field, in terms of isotherms, for
the case of Ra=1000, A=1, A =5 and JI=1.
The figure shows that these distributions arc
generally similat to those for Newtonian

M. H]

fluids. Also it can be scen from the figure
that the strecam lines arc condensed near the
top of the plate which means higher ow
velocity and so higher convection in that
region. The vorticity and microrotation
patierns {or the same case and at the samc
time are shown in Fig. 11. The figure clearly
shows that both patterns are very similar
with  even zero vorticity and zcro
microrotation contours ( dashed lines ) are
almost identical.

140 N
1
120- Ra=1000, Pr=7.0
Flat plate {Ar=0.025 }
100 4=0.0
80 4 —-— - a=lu
Nu s 4=20
% ———  A=510
]
404
20+
0 T v T T

180 200 220 240 260 280 300 320 340 360
gl

Fig. 13 Steady state local Nusselt number
distibution

Shown in Fig. 12 are the present results
for steady statc average Nussclt number
variation with Rayleigh number, Ra for the
case of naturai convection from a vertical
plaic  placed in Newtonian fluid (A=0).
Shown also in the samec figure is the
cmpirical correlation proposed by Churchill
and chu [25]. For laminar flow range the
correlation takes the form:

. 025
Nu=0.68+—~——0£z—[ia——— (16)

[+ (0.492/pry /|

The figure shows an ecxcellent agreement
between the present results and the
corrclation (16). The approximate solutions
of Raithby and Hollands [4] given for
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