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Abstract :

The analysis of soil structure interaction is still a query and on the basis of different
assumptions; several methods have been elaborated for such analysis. Different methods
used for amalysis of raft foundations are considered. A computer program has been
developed for analysis of raft foundation considering the interaction between the raft and
the underlying soil strata. In the analysis; the raft is divided into a certain number of
elements and the soil is modeled by a series of an infinite number of linearly elastic
springs. Each spring has a stiffhess equal to the modulus of subgrade reaction which
varies according to soil satus

Methods for analysis of raft foundation investigated in this study include: the finite
difference method , the grid method, the raft analysis as individual strips on elastic
supports , and the ﬁmte element method .

The different methods are considered along with the well known program SAP 80
and the results for the comsidered case gave close results . Thus the program can be
effectively used for analysis of raft foundation using any of the previously mentioned
methods . Finally , a suggested method for design of the raft foundation is presented .

1 - Intrqduction s

Raft (or mat) is usually used to define a substructure in which loads are
transmitted to the .soil. by means of a continuous slab covering the entire area of the
bottom of a structure, like floor. Rafts are usually designed.and analyzed as a rigid or
flexible plates resting on an elastic foundation. Mats are usually used when the building
loads are so hesvy or the allowable soil pressure is so small that the individual footings
would cover more than about half the building area. In addition to the advantage of
distributing the building loads over the entire building area, mats are used to decrease
differential settlements and total settlement -Mat foundations are also used to resist

o hydrostatlc uplift and bndge over isolated pockets of soft soil. -

" The simplified ‘fethods or_ r;g;d _methods of analysis are easy to use and do not
need computer assistance. However, the accuracy of these methods is very poor and in
many ¢ases the results are diverged from the right solution. Moreover, they can handle
only a certain geometry. On the other hand, in the flexible methods, the raft is assumed to
be relatively flexible and its flexural rigidity is taken into account for the conclusion of
the contact pressure between the soil and the raft. These methods take also the effect of
the soil stiffness into consideration through the use of idealized soil model.
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2 - Rigid Mg;hods ( Ca(gn’ngtioltql Methods) : -

In this method, the raft is assumed to be infinitely rigid and the contact pressure
has planer distribution. The centroid of . the contact pressure coincides with the line of
-action of ‘the resultant "of all vertical loads acting on the raft and the contact pressure ¢
can be calculated from the equation:

g=R (&2 ytey) 0
A L7 I, ‘

Where :
R = XQ = Total loads acting on the raft.

A = Total area of the raft.

xy = Coordinates of any given point on the mat with respect to the x and y axes
passing through the centroid of the raft area.

ex, &y = Coordinates of the resultant force.

I, Iy= Moment of inertia of the raft area with respect to the x and axes
respectlvely

The raft is analyzed as a whole in each of two perpendicular directions. Thus, the
total shear force acting at any section across the entire mat is equal to the arithmetic sum
of all forces (loads) and reactions (contact pressure)-to the left or right of the section .
., The total bending moment acting on such a section is equal to the sum of all moments on
either side of this section. This solution is considered a highly indeterminate problem.
Therefore, an approximate procedure may be adopted as the raft is divided into

“perpendicular bands , each band carrying a row of columns , taking full loads in each
direction .

The solution by rigid methods are very approximate as the contact pressure
distribution is considered plane, varying linearly and its resultant coincides with the
resultant of all external loads and moments acting on the raft. So, such methods neglect
the increase of the contact pressure near the columns and divides the raft into separate
strips neglecting the shear transfer due to continuity between adjacent strips. Moreover
they consider full column loads on each strip in each direction, which is very
conservative. '

Good results can be obtained using methods when ACI- Committee assumptions
for rigid footing are fulﬁlled o

3 - Flexible Methods s -

In these methods, the raft is assumed to be relatively flexible and its flexural
rigidity is taken into account for the conclusion of the contact pressure between the soil
and the raft . These methods take also the effect of the soil stiffness into consideration
through the use of idealized soil model. The resulting contact pressure distribution
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generally has a curved surface , which is more realistic than the rigid methods. Among
the flexible methods are the followmg discussed methods

Lo

3-1- Beams on Elasttc bupports -

In this method the faﬂ is analyzed in both directions as individual strips resting on
soil. Each strip is analyzed under full column loads. The theoretical solution of a beam
on elastic foundation was treated in considerable detail by Hetenyi(1946) @

3-1-1. The Differential Equation of the Elastic line :

The differential equation govérning‘ the behavior of a beam supported along its
entire length by an elastic medium and subjected to vertical forces acting in the prmclpal
plane of the symmetrical cross section is given by :

4

d
E[:dx{=-ky+q )

where :

EI = flexural rigidity of the beam.

x,y = horizontal and vertical coordinates.
k = modulus of foundation.

q = distributed load acted on the beam.

. Along the unloaded parts of the beam, where no dlstrlbuted load is acting q = 0,
and the equatxon akove will take the form :

d*y
dx4

g=2Yoy 3)

- The general solution of the deflection line of a straight priusmatic bar supported on
an elastic foundation and subjected to transverse bending forces, but with no q loading
takes the form :

y=e"(C, coshx +C, sinAx) +e™(Cpcoshx +C,sinkx)  (4).

Here, A includes the flexural rigidity of the beam as well as the elastiCity of the
supporting medium, and is an important factor influencing the shape of the elastic line
and the Cs are constants which can be determined from.the boundary conditions.

3-2- The Finite Difference Method :- o
This method is based on_the assumption that the subgrade'can “be substituted by

bed of uniformly distributed elastic springs with a sprmg constant (coefficient of
subgrade reaction ks) .
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In the mechanics of solution, the mat is divided into a grid , with sufficient divisions
taken so that all columns fall at the intersection of grid lines. The grid should be
subdivided so that Ax = Ay, the difference expression then being in their simplest from,
however, it is easy to derive finite difference expression for the case Ax # Ay.

Form the foundation -engineering standpoint, the plate problem is a concrete slab
on an elastic medium . Timoshenko(1959) expanded the differential equation for
deflection of such plate " :

viw=L, L __ (5)
D D (oxdy)
where :
d'w  29%w 3w
Viw = + +
dx* 2x¥y* o9y
q = Intensity of load.
p = Concentrated load at point of interest.
w = Deflection.
3
D = Rigidity of the plate = ———+
Bty P 12 (1-p?)
4 4 ' 4.,
Making direct substitution of gx}: and gy“:) and 5 52;})2 and uing dx =9y =h, »

the finite difference equation in terms of deflection at any point within a plate using a
square grid will be : ( see Fig (1))

20wo =8 (wr+ wp+ wr + WL)+2(WTL+W'1R+WBL+WBR)+(WTT+WBB+WLL+WRR)
qh4 phZ .

= ©)

D D

The sign convension is based on +q and +p in the downward direction. The ¢-
term may be upward soil pressure or downward plate loading. The soil pressure is based
on the concept of subgrade reaction

-q=kw - @)

The equation(6) can be applied at any intermediate point in the plate, but when it
is applied at a point within two nodes of an edge or at corner, some of the deflections
will fall off the plate. One of two approaches may be utilized:’

(1) Use of backward or forward difference expression.

(2) Consider fictious points off the plate and use
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— + p——s=0 "~ moment perpendicular to edge = 0
dx* 0

3 L 3 . .
_8__143_ + (2 -p )a "3) =0 shear perpendicular to edge =0
dx’ dy

After the deflections are known, the bending moment at any point in each direction
can be determined from theory of elasticity:

My =M,+uM, (8)
M; = Bending moment per unit strip in x-direction.

M; = Bending moment in the x- direction not including the influence of bending
moment in the y- direction.

M, = Bending moment in the y- direction not including the influence of bending
moment in the x - direction.

By using the finite difference operators, the total bending moment at any interior
node can be expressed as

My = D2 (wr - 2w, +wp)+H Dz (Wt - 2wg +wg)
S0 dx dy
®

. -
-My = (Wt - 2w, +WB)+M5;‘2‘ (WL - 2wo +WR)

D
2y?
3-3- Grid Method :-

In this method ; the mat is discretized into a number of beam-column elements with
bending and torsional resistance . The torsional resistance is used to incorporate the
plate twist using the shear modulus G.The finite grid method produces non - conforming
elements as well as interelement compatibility is insured only at the nodes. A theoritical

development of this method and its application on mats was introduced by Bowles @ |

3-3-1 General Equation In Solution :

For the following development refer to fig:(2) at any node ( Junction of two or
more members) on the structure, one may write.

P = A K ' : (10)

Which states that the external nodal force P is equated to the internal member
forces F using abridging constant A. For the full set of nodes on any structure and
deleting subscripts this becomes :

(P} =[AI(F) oy
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An equation relating internal-member deformation ¢ at any node to the external
nodal displacement is :

{e} =[BIl{x} (12)

Where both e and x may be rotations or translations. Form reciprocal theorem in
structural mechanics and the matrix [ B ]is exactly the transpose of the [A ] matrix,
thus :

ey =[A] [x] (13)
The internal- member forces {F are related to the internal - member displacements as :
{F}=1[S] {e} ‘ (14)

These three equations are the fundamental equations in the grid method of analysis.
By some algebraic manipulation we can get the only unknowns in this system of
equations namely { x } as follows:

{(x} = (LAILSI[ADY (p}y (9
with x’s , the internal member forces which are necessary for design c.an be

obtained. Referring to Fig. (3) and using the conjugate- beam principle and solving the
equation, the forces can be found in terms of the end slopes e, and e, as follows :

4EI 2EI

TR |
! , (16)
' _2El  4EI
ETerT

The forces F,4 and Fs are obtained from the spring equation for force deflection as
F4= kl;es F5= kz.es (17) ‘

The soil spﬁng will be obtained (due to Winkler’s model) from the modulus of
subgrade reaction as : - :

K| = é-bk's - and K; = —L—bks
2 : 2

where :
L = The length of the element.

b - = The with of which the element is occupied.

. The torsion factor for F3 is also included in the matrix which is equal to %{
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where ;

G = Shearing modulus = ——L ’
, o200+

E = Young’s modulus .
L = Poisson’s ratio
j = The torsional rigidity of the grid‘element .

The matrix equation is written as :

(F} = [S] (e) (18)

i ]

|

L L

BLOAEL o

L L :
[S1=] o O%OO (19)

i
3-3-2- The Solution Procedure :

First the element [S] [A]" is component by multiplying the element [S] matrix by the
transpose of the element [A] matrix. Then the element [A] [S] [A]" matrix is obtamed which
is 6 x 6 and is placed at the appropriate locations in the global matrix [A] [S] [A]" matnx
Thus the displacement vector {X} can be obtained - after inversing the [A] [S][A]" global
matrix and the element forces matrix is solved for each element in turn to ﬁnd the element
forces as :

(X} = (AIISTIAT) ™ (P) - @
~and  {F}=[S] [A] {x} @D,
4 - The Finite Element Method : - .

The process of subdividing all systems into their individual components or
“elements” whose behavior is readily understood, and then rebuilding the original system
from such components to study its behavior is a natural way in which the engineer or the
scientist can proceed to solve a problem.
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4-1- Finite Element Techniques for Raft Analysis : -

Using the displacement method (stiffness method) to formulate equilibrium
equations, a rectangular element with twelve degrees of freedom (Three degrees of
freedom at each node) is used to analyze the raft.

By following the finite element technique, the whole raft is analyzed as an
integrated system of a number of finite plates in bending, the elements are connected at
nodes and resting on a system of infinite number of kinematically consistent springs. The
origin of the global system of axes will be lying on the middle surface of the raft and the
local axes are parallel to the global and the origin of the local axes is located at the
center of the rectangular element as shown in fig . (4).

The state of deformation of the raft can be described entirely by one quantity. This
is the lateral displacement w of the middle plane of the plate.

The plate-bending element used in this study is called MZC rectanglé and is shown
in fig(5 ). It has only one generic displacement (w) translation in z-direction and it
produces convergent results. The nodal displacements are :

8 .
qi =(qi1, g2 ,(Ii3)=(w,~ , 8 i , i for (i =1,2,3,4) (22)

So evéry node of the rectangular element in bending has three degrees of freedom
which are

() Vertical translation (w) normal to the plane of reft in z - direction.

(ii) Angle of retation about y-axis (%_‘f’_)
y

(ii) Angle of rotation about x-axis (-—%—w~) '
x

Thus the result is twelve degrees of freedom and the local stiffness matrix of plate
element will be of dimension (12 x 12). Therefore the global system of equations are :

(k] {a} = {P} (@3)

[K] = The global stiffness matrix which is the assembly of the local stiffness
matrices of the plate elements and soil stiffness matrices each to their corresponding
degrees of freedom. It is a symmetrical matrix of order (3n x 3n) where n is the total

number of nodes.

{q} = The dlsplacement vector of the whole system and its dimension is (3n) and it _
is the assembly of nodal actions whichis 7 -

P; = {Pu, Pi, P }= {Pai, M , My} for (1=1,2,3) (24)
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The symbol P, denotes a force in the z - direction but My and My; are moments in
the x and y axes.

From the previous discussion, we note that to get the displacements at the nodes
with discretize the raft we must get the stiffness matrix for every element and assemble
them to obtain the global stiffness matrix and get its inverse as

@ =[KI" () ey
4-2- Soil Stiffness Techniqiie :

The soil element stiffness matrix is derived by replacing the springs over the entire
element with four springs at the nods. This can be achieved by dividing the soil into a
finite element mesh identical to the mesh of the mat. Furthermore, it is assumed that the
rectangular areas surrounding a given node, defined by the center lines of adjacent
elements, undergo uniform deflection. Thus the soil is idealized as a set of isolated

-springs (Fig. 6) capable of resisting compression only :

k= ok | (26)

where :

'k; = Soil stiffness at a rlode o

A. = Area of element surrounding a node.

ks = Coeficient of subgrade for the element u.nvd'ér' consideration.

4-3- Stresses In The Raft Elements : -

After the element have been assembled and the structure has been analyzed for .
nodal displacements, the generalized stresses of selected pomts in each element may. be' .
obtamed as follows

(M} ={Mx, My, Mg} =[E][B]{q} 27)
where :

M , Myy, My = The internal bendmg moment about x and y axes and the twisting
moment

[E] = Matrix relating stresses to strains. -

[B] =Matrix gives strains at any point within the element due to unit values of nodal
displacements.

{qe} = Nodal displacements array for the element.

Then the flexural stresses can be found with the aid of the following equation :
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(0} = (0x,0y 0 }———113"1 (M) (28)

Thus the stresses within the raft foundatxon soil pressure and displacements can be
determined.

5 - The Computer Prograin

A computer program has been developed to analyze the rall foundation in different
numerical methods discussed before. This analysis is realized by dividing the raft into
rectangular pieces creating a slab mesh consisting of elements and nodes. This procedure
is called discretization, so’ instead of solving the problem for the entire body one.
operation, the solutions are formulated for each constituent unit and then the discrete
equations are combined to obtain the solution of the original body four methods are used
'in this analysis namely :

1 - The finite difference method.
2 - Raft analysis as a beam on elastic foundation.

3 The grid method where the raft is considered as an assembly of separate beams
in the longitudinal and transversal directions.

4 - The finite Element method.

The mats may be subjected to any combination of vertical loads and moments.
Moreover, the vertical loads may be concentrated or uniformly distributed over a
rectangular area of raft. These external loads are applied at the nodes where the
displacements ofthe raft are calculated and the stresses are found. '

) Using " Winkler model, the soil is replaced by individual springs under the nodes
with different values according to the modulus of subgrade reaction.

5 - Numerical Examples : -

To compare the different methods of analysis, a raft model is chosen with
dimensions and load locations as shown in (Fig. 6) itis 5 x Sm and 0.5 cm thick resting
on sandy soil at - 3.0m from the ground level. The soil has modulus of subgrade reaction
of 1600 t/m> and allowable stress 30t/m?. The raft is divided into raws as shown in
(Fig. 7) and elements and is analyzed by the different previously mentioned methods.

6-1 - Comparison of l)l_'[fcrcnt Methods of Analysis : -

The previously -mentioned” methods are considered along with the well known
packaged SAP 80. For the case considered the results for the different methods are close
as shown in Figs. (8), (9) where the displacements and bending moment in the raft are
plotted.
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6-2- Raft Thickness Effect : -

. The raft. thickness effect is considered by considering the pervious model with
different thickness ranging from 0.25 to 1.0. It is concluded that a moderate value gives
better result, small values make the raft very flexible while big thickness make the raft
very rigid. The raft displacements and bending moments for the different axes are shown
in Fig . (10) and (11). In this case the finite element program is used for analysis.

6-3- Raft With Variable Thickness : -

For economic design, there is to take a constant thickness through the plate rafl
and only the raft need to be thickened under the different loads to ensure safe punching
stresses and in the same time the footing should satisfy the allowable soil pressurc. The
previous model is used with different thicknesses as shown in Fig. (12).

A comparison of raft displacements and bending moments for constant thickness of
0.5m thick and variable thickness as in Fig. (12)is shown in Fig, (13), (14), (15) and
(16Y). 1t is clear that the raft with different thicknesses may be more suitable in some

cases rather than raft with constant thickness.

7 - Conclusion : -

Different methods for analysis of raft foundation are investigated. A computer
program has been developed for analysis of raft foundation according to the discussed
methods considering the interaction between the raft and the underlying soil strata . The
soil is modeled by a series of an infinite number linearly elasﬁc springs. DifTerent
numerical examples are presented. The computer program has been proven to be
adequate for analysis of raft foundation in an accuratc way.
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Bending Moment Distribution along Strdp No, 2
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Bending Moment Distribution along Strip No. 2
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