Q1. Fundamentals [15 mark]

a) State the steps of the general procedure for building up a mathematical model. [5 mark]

b) Develop the lumped model (state the assumptions clearly) and make the degree of freedom analysis for a system of a tube heat exchanger shown in the figure. Liquid A of density ρ_A and specific heat c_{pA} is flowing through the inner tube and is being heated from temperature T_{A1} to T_{A2} by liquid B of density ρ_B and specific heat c_{pB} flowing

counter-currently around the tube. The temperature of liquid B decreases from T_{B1} to T_{B2} .

[10 mark]

Q2 ODE [20 mark]

The conservation of heat can be used to develop a heat balance for a long, thin rod. If the rod has a uniform heat generation and is not insulated along its length and the system is at steady state. The equation that results is:

$$\frac{d^2T}{dx^2} = h(T - T_a) + S$$

with boundary conditions

$$T(0) = T_0$$
, and $\frac{dT}{dx}\Big|_{x=0} = q$

where h is a heat transfer coefficient (m⁻²) that parameterizes the rate of heat dissipation to the surrounding air, T_a is the temperature of the surrounding air (°C), and S is the heat source (°C/m²).

Take: $L_x = 1.0 \text{ m}$, $T_0 = 20 \text{ C}$, q = 20 C/m, $h = 0.025 \text{ m}^{-2}$, $T_a = 20 \text{ C}$, and $S = 20 \text{ C/m}^2$

- a) By hand calculation, using Euler method calculate the temperature distribution along the fin, take step size $\Delta x = 1/3$ m. [5 mark]
- b) Write a MATLAB function to solve a system of ordinary differential equations by Euler method. [5 mark]
- c) Write a MATLAB function to define the model and its parameters and constants. [5 mark]
- d) Write a MATLAB script to solve for the temperature distribution in the fin described above. [5 mark]

[7 mark]

Q3 PDE [25 mark]

The horizontal cross section of an industrial chimney is shown in the accompanying sketch. Flue gases maintain the interior surface of the chimney at 300 °C, and the outside northern and western surfaces are exposed to an ambient temperature of 20 °C through a heat transfer coefficient of 5 W/m² K, while the southern and eastern surfaces are maintained at 20 °C. The thermal conductivity of the chimney is k = 0.5 W/m K, the density $\rho = 1800$ kg/m³, and the specific heat c = 840 J/kg K. initially, the chimney is at temperature of 20 °C.

If the system is governed by the following energy (unsteady conduction) equation

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

a) Derive the finite difference equations (FDE) and the stability conditions for:

i.	The interior (non-boundary) nodes	[3 mark]

ii. The boundary nodes

b) Develop MATLAB code to determine:

i.	How much time is required to reach the steady state,	[5 mark]
----	--	----------

ii. The temperature distribution in the chimney at any time, and [5 mark]

iii. The rate of heat loss from the flue gases per unit length of the chimney at steady state. [5 mark]

Good luck.

Dr. Hossam S.S. AbdelMeguid