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ABSTRACT 
In this paper, The stability analysis for the method of lines (MOL) will be established 

analytically and computationally for both initial and boundary value problem in ordinary 
differential systems. 

1- INTRODUCTION 

The stability analysis constitute the essential study of the numerical solution of 
partial differential equations in general this is because such study provides the 
means by which the step size and the numerical integration scheme for the given 
differential equation could be selected so as to secure manageable numerical 
solution . 
Regarding the methdd of lines for parabolic, hyperbolic ,and elliptic partial 
differential equation (in two variables),they can be classified according to the 
nature of the resulting system in connection with the direction of daiscretization 
as shown in the following table in which some examples will be illustrated : 

Table (1) 
Nature of the system in connection with the direction of discretization 

initial value type- in ordinary differential equations is well studied by -various 
authors and will be the subject of section 2 and section 30f the present paper . 

9 

NATURE OF THE 
RESULTING SYSTEM 

Initial value type in ODE. 

EXAMPLES FOR PARTIAL 
DIFFERENTIAL 

EQUATIONS IN TWO 
VARIABLE 

Parabolic 
Parabolic 
Hyperbolic 
Hyperbolic 
Elliptic 

DISCRETIZATION 
DIRECTION 

X - direction 

The stability analysis of the method of lines for discretization that produce 

T - direction 
X - direction 
T - direction 

Y (or X )- direction 

-. 
Boundary value type in ODE. 
Initial value type in ODE. 
Boundary value type in ODE. 
Boundary value type in ODE. 
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In view of the too complicated behavior of the boundary value problems than that 
of the initial value one, it is not surprising no serious attempts except that of Jones 
et al. [12] have been made to analyze the stability of the method of lines for 
discretization that produce boundary valued problems in ordinary differential 
equations consequently a study must now be developed to fill the gap left for the 
stability analysis of the method of lines for: 

(1)  The elliptic partial differential equations. 
(2) The parabolic and hyperbolic partial differential equations under 

discretization that produce boundary value system . 
In section 4 a technique for the stability anaIysis to elliptic differential 

equations when treated by the method of lines will be established. 
Consequently, a general and flexible computational algorithm may now be 

devised once for all types of partial differential equations. Such computational 
algorithm will be considered in section 5. 

2- STABILITY FOR PARABOLIC EQUATIONS 

In order to analyze the stability of parabolic equations we consider the heat 
equations as a typical example 

dii d2ii -=- 
at ax2 

Without loss of generality, discussion is limited to equation (2.1) in region 
- 1 S x S l .  
Boundary conditions are: 

Ti(-1,t) = a ,t > 0 

It is convenient to restate the problem as follows: 
a + b  

~ e t  ~=~+[v]~+- 2 ; then (2.1) becomes: 

du d2u -=- 
at ax2 

and (2.2) become : 
u(-1,r) = 0 ,t > 0 

u( 1,t) = 0 ,t > 0 
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By discretization (2.3) with respect to x , the following system of ordinary 
differential equations is obtained : 

a2u 
Where za, u, is a finite difference approximation to - at the discrete point ax2 

a2u 
Specifically , if the finite difference approximation to - involves "2K+I" ax2 
points centered about ui , and the closed interval [-1,1] is divided into 2N equal 
intervals , this equation (2.5) becomes : 

a total of 2N-I equations in 2N-I dependent variables . If the central difference 
approximation is to be used throughout, assumptions must be made about the 
values of k-l points outside each end of the interval . In dealing with 5 point 
central difference approximations to the second partial derivati~cs, Fisher [5] 

du d2uN 
proposed that , at the endpoints, whereu, ,,A - , all equal zero because 

dt ' dt2 
of (2.4), the 3 point central 
difference approximation also can be assumed valid . This assumption leads to the 
requirement that uN+, = -u,-, and u-(,+,, - - -u-(,-,, . All equally spaced central 

difference approximations to the second derivative are symmetric in the values of 
the coefficients of ui about the central point . Therefore, if Fisher's proposal is 
extended to require that , staring with the 3 point formula , all odd point central 
difference formulas for the second partial derivative, up to and including the odd' 
point formula being used , agree in being equal to zero at the endpoints, then 

This is a specification of the required values of outside the endpoints. This 
specification does not violate common sense , and is also in accord with the 
Fourier series solution of (2.3) subject to (2.4) where such antisymmetry occurs 
about the endpoints of the interval . It should be noted also that where is no reason 
to use an even number of points for approximating the second derivative because 
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the next lower odd point central difference formula always gives an 
approximation of the same order. 

Equations (2.6) for a 3 point central difference approximation are , in matrix form 

1 where h =- 1 . 
Or 2 A u  =mu N 

ZN-1 a t  The solution is = C ck E, exp(+), where the Ak are the eigenvalues of 
k=l  

A, Ek are eigenvectors of A, , and the C, are the Fourier coefficients of (2.5) 

The eigenvalues of A, are given by 

kn 
Ak = -2 + 2 COS- , k = 1,2 ,..., 2N - 1 

2N 
Normalized eigenvectors are found, by direct calculation, to be: 

k n  sin ,, 
2 k n  sin ,, 

. ( 2 N - l ) k n  sin ,, 

, E m  

. 3k7r sin 5 
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These eigenvectors have a trigonometric character . These are appropriate 
functions for fitting the boundary conditions (2.4) . They are, in fact 
eigenfunctions of (2.3) at the discrete points xi . 

Equations (2.6) for a 5 point central difference approximation are , in matrix 
form, 

-29 16 -1 0 ' 0  ... 0 0 0 

16 -30 16 -1 O . . .  0 0 0 

-1 16 -30 16 -1 ... 0 0 0 
1 

In general , for an " n " point finite difference approximation 

Now it can be shown , by direct calculation (for n = 5,7,9,11) , that the recursion 
formula : 

= (-I)?[(?) !r ~~y + (n - 1) (n - 2) (2.1 1) 
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holds . The significance of (2.1 1) is that each of the matrices, A,, is a polynomial 
in A, , and , therefore , commutes with A,,which implies that A, has the same 

eigenvectors as A, . Now the eigenvalues of A, are real and negative . Formula 

(2.1 1) can also be used to compute the eigenvalues of 4, which are always real 
and negative,and which approach the eigenvalues of (2.3) with increasing N , as 
shown by Fisher[ 51 . 
Therefore , there is stability and also convergence to the true solution with 

increasing N .Used of these eigenvectors to approximate the function u(x,O) of 
(2.4) is equivalent to fitting u(x,O)at discrete points by trigonometric 
interpolation. If u(x,O) has a conve- rgent Fourier series expansion , the discrete 
approximations will converge to u(x,O) as 
N increases . Any stable , convergent numerical algorithm applied to solving 
resulting system of ordinary differential equations will then also produce a stable , 
convergent numerical solution of the associated partial differential equation . 

Whether or not the use of the higher order difference approximations will 
improve convergence depends on the importance of the higher eigenvalues . As 
the number of points "n" used to approximate is increased (keeping N constant ), 

the eigenvalues 
2ak 

of the approximating system of ordinary differential 
[(n - I)! h2] 

- k2n2 
equations. (2.6) more and more closely approach --- , the eigenvalues 

4 
appearing in the solution of (2.3) by Fourier series . Thus, as N is increased , the 
solution of system (2.6) appoaches a truncation of the Fourier series solution of 
(2.3) to 2 N - 1 terms . If the first three or four terms of the series adequately 
determine the solution , then use of higher order differences will not be necessary 

It is noted above that the use of a central difference approximation of order. 
greater than 3 .requires explicit specification of dependent variable values outside 
the interval of interest . Explicit consideration at either end of the x interval, For 
example, with a 5 point difference approximation, instead of the central 
difference formulation 
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where y,,, must be specified in terms of the other y's , we can use ( see Kopal 

U41) 
d2yn-1 -- 1 " - - - z - ( - ~ n - 4  + 4Yn-3 + 6Yn-2 - 20Y'4+ 1 ~Y'J ax2 12h 

which does not involve points outside of - 1 I x I 1 .Numerical 
experimentation[7,10] shows this approach to be significantly more than use of 
the central difference formul- ation when eigenvalues are not important .The 

a2u 
eigenvalues, for a 5 point noncentral difference approximation to - are real ax2 
and negative .This assures stability . 
Theorem : the eigenvalues of the non-central difference matrix B , given by 

are all real , negative , and lie between the eigenvalues of the Fisher matrix F , 
where 

-29 16 -1 0 . . . 

as 2nd to (n - 1) st rows of B (2.13) 

... -1 16 -29 
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10 ... 0 -1 5 -10 9 1  

If n is the dimension of F ,then E ,the normalized eigenvector matrix of F ,is 
given by - 

2n 
sin - 

n + l  
4n 

sin - 
n + l  

2n - sin - 
n + l  

4 . in 
By using the notation ai = (-)sin- and 

n + l  n + l  
jn 2jz 9sin- - losin- + .=( n + l  n + l  

the matrix E-'BE can be written as 
0 

a2P2 + 4 0 ... 

L 

The eigenvalues of E-'BE ( same as B ) are given by the roots of a determinantal 
equation . By row and column interchanges and some simple algebraic 
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manipulations , the determinantal equation can be expressed in polynomial form 
as 

j odd i odd jeven i odd 
i # j  i # j  

If Bk = 0, then x = Ak is a root , and we factor (4 - x) out of (2.17) . Then 

by dividing each of the above by its first term , we obtain ( let mi = a,Pi ) 

i z  i n  
where A, >iL, > ... >An because A, =-28+32cos--4cos2- . 

n + l  n + l  

Let f ; (x)=l+ - mi and f , ( x ) = l + c -  mi , now if mi mi+, > 0 , it 
i oddAj-x i even Ai - X 

follows consideration of the singularities of (2.18) that there is a root of (2.18) 
(and of (2.17) )between Ai and Ai+, . Now , by using the appropriate 

iz 
trigonometric identities (let zi = cos- ) : 

n + l  
16 

m. =- (1 - zi2) (1 - - 2.q) n + l  

n + l  Because mi is positive for - 1 < zi < t , mi is positive for - 
2 

< i I n  . I f  n + l  

is divisible by 3 , m,+, = 0 . 

Because the A, are strictly decreasing with i , we have only to consider 
(2.18) with one change of sign between adjacent m's in the first term, and at most 
one change of sign between adjacent m's in the second term . We know at once , 
then , that there are at leastn - 4negative real roots to (2.17)'each lying between 
two eigenvalues of F . 

The eigenvalues of F are given by 
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n + l  
For i=-  , A, = -13 ,we show that 

3 

and 

and thus prove the theorem . 
We show below that, in fact 

This is sufficient condition for f, (13) > 0 and f, (1 3) > 0 . 

in in 
(1 + cos -)(I - cos -) 

n + l  n + l  or in 
(15 - ~COS-) 

. . n + l  
in in 

(1 + cos -)(I - cos -) 
n + l  n + l  so if 13 

in in in 
(I-2cos-+2cos3--cos -) 

n + l  n + l  
SO n + l  5 1  

n+l ,=, 13 

the theorem is proved. 

From the following relations , see [l  11 
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ia i ,in g C O S ~ = O = ~  i=l cos n + l  by symmetry 

therefore 
in in in 

(1 - 2cos-+2c0s3-- cos -) 
252 n + l  n + l  n + l  - 16 8n-3n+5 =- 
n + l  i=l 13 n + l  8x13 13 

Q.E.D. 
An alternative formulation of an 0(h4) method , one [I91 uses the Numerov 

finite difference formula , this is based on replacing the right hand side of (2.3) by 

which leads to the 0(h4) system ( for "3" point scheme ) , 
du. dui-, 

(ui+, - 2ui + u,)lh2 = i(h+ 10-+- 
12 dt dt dt 

which can be shown to posses real and negative eigenvalues, then the system is 
stable . 

3- STABILITY FOR HYPERBOLIC EQUATIONS 

In order to study the stability of hyperbolic equations , k t  we consider the first 
order equations ,and ,then, we consider the second order equations, taking the 
wave equation as atypical example . 
3.1 First order equations: 

The method presented in this subsection uses a three point difference 

scheme which is a biased average of forward and backward differences. The 

direction and amount of the bias are adjusted to give stable difference 

schemes with as accuracy between the usual first and second order schemes. 

We first study the accuracy of the following difference scheme [6] 
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where A and B are ihtegers greater than or equal to zero , A +  Bis an odd 
." . 

integer, and E, is the truncation error. This equation may be rearranged to 

This qangeqent, shows, eighted average of 
A forward differeixes and 3 backward differences . By replacing the two 
differences with theirTaylor series expansions , one obtains 

+- I 
df; '& d2J; (W2 -+--+- 
dx 2 dx2 6 

Since B - A = .tl , thfs equation-reduces to 

For A +  B equal to 1 , the difference scheme reduces to either the usual forward 

where u(t) is. the approximate value 0f.u at -x, q ~ d  . . t . a : We use implicit Euler 
scheme for solving (3.7) , then the resulting sj%m is 

, 
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where uni(t)the solution to the difference equation at xiand t,, .To show 
unconditional stability with Fourier method of analysis [18], one assumes that the 
solution of the difference equation is of the form 

Ur = y n  ,J Pt (3 m9) 

I 

where j = (-1): and then shows that the magnitude of the complex constant y is 

less than 1 (the von Neumann condition ). Substituting this expression for Uln into 
equation (3.8) and simplifying lead to 

y = (1 - r c  - rA ~ J P ~  + r~ e-jp"F' (3.10) 
where 

r =  
D At 

(3.1 1) 
(A+ B) AX 

The equation (3.10) may be rewritten as 
y =(l-r~(1-cospAx)-r  j ( A + ~ ) s i n p A x ) - '  (3.12) 

For this procedure(equation(3.8))to be unconditionally stable, the magnitude of y 
must be lees than 1. 
The requirement is satisfied if 

1 (using the fact that z = - 1.e. = is less than 1 if a > 1 ) . This 
a - ib 

condition may also be written as 

Sincecos p Ax I 1 , C must be positive if D is negative and C must be negative 
if D is positive. This implies that A < B for - D < 0 and A > B for D < 0 .  To 
maintain stability , the averaging of the forward and backward differences based 
upstream relative to the motion of the wave . As (A+B) increases in value the 
magnitude of y approaches 1, which is the condition of marginal stability . 

For an explicit time procedure (Euler scheme), the finite difference scheme 
for equation (3.7) is given by - 
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Using the same steps as in implicit scheme , we find the condition lrl c 1 leads to 
the restriction 

A t l  
- C h  

D ( A + B )  
on the size of the time step . Since Ax and At are both positive , this equation 
gives the relationship between the signs of C and D as that found for the 
implicit case . 

For (A+B) equal to 1 , equation (3.16) gives the time step restriction for an 
explicit procedure based on forward D > 0 or backward D < 0 differencing . 
As A+B increases , the time step restriction appears to become more severe. 
However, since the spatial truncation error is reduced by a factor of A+B , a value 
of Ax that is A+B time as large can be used with biased difference scheme for the 
same spatial truncation error . Therefore a given error, the maximum time step 
allowed for stability of the biased difference scheme is independent of the value of 
A+B as long as the first order term dominates the truncation error . since a larger 
value of Ax is used with the biased difference scheme ,fewer difference equations 
must be solved per time step . In reference[8], the authors employ the above 
technique using the package for the solution of ordinary differential equations by 
Hindmarsh [lo] . 

We are concerned , now , with the application of a few of the standard 
methods for ordinary differential equations to equation (3.6) , with D = - 1  . First 
, we describe the scheme for ordinary differential equations . we write the 
equation in the form 

x = f (x , t )  (3.17) 

and denote the approximation to y(t,,) = y(n At) by y,, . Then the leapfrog 

scheme is 

Y,+I = Y,-, + 2 At f (Y, , tn) (3.18) 

The Runge-Kutta version 

Y,,+~ = y,, +(k l  +2k2 +2k3 + k 4 ) / 6  (3.1 9) 

where 
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The other corrector is based on the following implicit Runge-Kutta scheme 

This scheme , which is implicit in yn+L and yn+, has been applied to 
2 

diffusion problems by Watanabe and Flood [2 r]. 

Adames predictor which has third order accuracy is 

These schemes are applied to equation (3.6) with D = -1  . With fourth order 
a4 

difference approximation to - namely , 
dx 

This defines a system of ordinary differential equations which approximate (3.6) 
du. 
-L= x(u,t)  , i = l ( l )N (3.24) 
dt 

where for equation (3.6) with D = - 1 

J;  = -6, ( d i  
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At 
For a fixed ratioR = - , the scheme defined above are subject to a stability 

Ax 
restriction, By making the substitution . 
4' = Y" exp(j pn Ax) 

and imposing the restriction that yn should be bounded , we obtain the stability 
restriction on the ratio R . These are 
1-Leap fiog : R 1 0.73. 
2-Runge Kutta : R 1 2.0. 
3- Milne implicit : R 1 1.26. 
4-Implicit Runge kutta : Unconditional stability, R < oo . 
5-Adams predicator : R 1 0.5. 

The condition for the Adams predicator was determined numerically using a 
root finder .The same result is obtained fiom the stability regions given by 
Shampine and Gordan [20] . 

Such schemes had been used by Miller 1161 for many problems with 
graphical determination of the optimal mesh ratio R and a comparison of the 
schemes . 
Conditions that Runge-Kutta methods are locally stable when applied to 
numerical solution of hyperbolic partial differential equations are derived by 
Kreiss and scherer in [15], other result in [3,4,17]. 

For nonlinear problems, Strikwerda [Y Y ]  using the concept of well posed 

problem , to establish the stability, with the aid of the results in [V] for finite 
difference method. 

3.2 Second order problems: 
In order analyze the stability , we consider the wave equation as a test problem 

a2u a2u -=- , O l x l l  , t 2 0  
at2 dx2 

with the boundary conditions . -. 

u(0,t) = u(1,t) = 0 (3.253) 

and the initial conditions 
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Using the standard "3" point central difference scheme to approximate the second 

derivative with respect to x variable, we obtain: 

1 
where h = - , with 

N + l  

u,(O)=f(x,) '=J , i = l ( l ) N  (3.26b) 

u](O) = g(x,) = g, , i = l(1)N (3.26~) 

= U ~ + l  ( l)  = O (3.26d) 

du, 
let v, = - , equation (3.26a) can be written in the matrix vector form 

dt 

and 

where A, is a matrix of N x N with 

f is a vector of ith component is f ;  , and g is a vector of ifh component is g, . - - 

One can define the vector W with 2 N component, as follows 
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then we can rewrite equation (3.27) as follows 

where A is an 2N x 2N matrix and is defined as follows 

The general solution is of the form 

w (t) = exp(A t ) W (0) (3.29) 

where both A and exp(At) in this case are diagonalizable . Now one can find that 

the eigenvalues of the matrix A are the square roots of eigenvalues of the matrix 

are given by 

Since A,(A,) are all real and negative, then the eigenvalues of A are all pure 
imagin- ary. Since the solution depends on the exponential of eigenvalues whose 
real parts are equal to zero, then a numerical solution of equation (3.28) is 
marginal stable. 

So far, we considered the stability analysis of the method of lines for 
parabolic and hyperbolic Partial differential equations. As a result of such 
analysis the resulting system is of the initial value type in ordinary differential 
equations, this because the discretization takes place in the x -direction. It 
should also be mentioned that, when the discretization takes places in the time 
direction, the resulting system will be of the boundary value type in ordinary 
differential equations. As far as the elliptic equation is concerned (see section 
(4))the resulting system will also be of boundary value type. 

4. STABILITY ANALYSIS FOR ELLIPTIC EQUATIONS 
In view of the too complicated behavior of the boundary value problems 

than that of the Initial value one , it is not surprising that no serious attempts 
except that of Jones et a1 [12]have been made to analyze the stability of the 
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method of lines for elliptic Partial differential equations, and even for the 
Parabolic and hyperbolic equations with discretization in the time direction. 
Thus, a study must now be developed to fill the gap left for the stability analysis 
of the method of lines for; 

(1) The elliptic Partial differential equations. 
(2) The parabolic and hyperbolic Partial differential equations under 

discretization in the time direction. 
In this section technique for the stability analysis of elliptic partial 

differential equations when treated by the method of lines will be established. 

In order to analyze the stability of the method of line for elliptic partial 
differential equations , we consider three examples , which are the Poisson 
equation in two dimensions , Biharmonic equation, and a nonlinear second order 
elliptic equation . 
4.1 The Poisson's Eauation : 
We consider the equation 

where D = ( (x ,~)  : 0 < x < a , 0 < y < bland f (x,y) E C(D) . Subject to the 
boundary conditions 

and 
m 

u(x,O) = 0 , u(x,b) = sin- 
a (4.3) 

When applying method of lines , with discretization in y direction , we 
obtain using "3" point scheme 

d2u + (u,,, - 2ui + u,,) - 
h2 

= f (x, y) + E, , i = l(1)N 
ak2 

(4.4) 

b 
Where h = - , and ET is of 0(h2) ( we drop ET from now on ) ; and 

( N + U  
subject. to 
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m 
uo ( x )  = 0 , uN+, (x)  = sin - 

a 
Now let 

du. I- - vi , i = l(1)N 
ak 

then 

Hence , we can write the system , in the matrix form as 

with the conditions 
u,(O) = 0 ,i = l(1)N 

The system (4.8) with (4.9) is a first order boundary value problem in 
ordinary differential equations . To solve such system we must find the value of 
v, , i = l(1)N , at x = 0 , which is not known . Fortunately a transformation 
from boundary value problem to initial value problem is possible by: using one of 
the shooting methods [13,19] . One of the most powerful method of shooting is 
the adjoints method . 

Rewrite equation (4.8) in a compact form as 
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w = A W + E  (4.10) 
where 

wT = [uT , vT ] ,uT = [u* U2 ... U N ]  , vT = [vI V2 ... vN] 
and A = [a, is a matrix of order 2N x 2N where 

I$ , J i -  jJ=1 , i = ( N + 1 ) ( 1 ) 2 N  

- 
Using the adjoint method , with adjoint system 

Z ( X )  = A' Z(X) 
Then the identity of method is 

2N 2N a 2N 

z,?)(~)w; ( a )  - Z?)(O)T ( 0 )  = ~ p ) ( x ) e ( x )  dx m = I(1)N 
i=l  i=l n i=l 

with a suitable terminal conditions f i r  the adjoint system 

where im = (N + 1)(1)2N (for our problem ) 
Now equation (4.13) can be rewritten as follows 

Using terminal conditions (4.14) and the boundary conditions (4.9a) and (4.9b) 
one can rewrite (4.15) as follows 



To solve the system (4.16) for 
F(0)  ,i = N +1(1)2N , 

the missing initial conditions 

we must have the values of z,!")(x) , i = 1(1)2N , m = l(1)N . To do this we 
integrate the adjoint system (4.12) backward from a to zero, with the terminal 
conditions (4.14) with storing the profiles.On the other hand one can solve the 
adjoint system(4.12) with (4.14) analytically which is the way to be considered in 
this work . 

The solution of the adjoint system , depend on changing the variable x by 
t = a - x  (4.17) 

And whence the adjoint system (4.12) becomes 

i(m) ( t )  = ~ ( ~ ) ( t )  , m = l(1)N (4.18) 

The general solution of (4.18) is 

z(") (t) = e x p ( ~ ~ t )  Z(~)(O) , m = l(1)N (4.19) 

Now the problem is to find e ~ ~ ( ~ ~ t )  which in turns depends on the evaluation 
of the eigenvalues of the matrix A and some related matrices . 

The eigenvalues of the matrix A are given as 

Due to the positvety of the eigenvalues of A (equations(4.20))to gather with. the 
round off error (of the numerical computation) is one of the heavy sources of the 
instability of the solution of the system (4.18).(This will be considered in details 
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at the end of this section ). In order to complete our analysis it remains to consider 
the effect of the number of lines on the missing initial conditions as another 
source of instability of the solution. To do so, let us first consider the eigenvectors 
of the matrix A which are 

and 

= 1" J , i ; I,,), - (4 .21b)  
4, N 4 

Secondly, we estimate the upper and lower limits of the eigenvalues of the matrix 

one can use these estimates directly to study the worst, case of the system (4.18) , 
which implies the maximization of the difference of eigenvalues (stiff ratio ) . By 
taking equation(4.2l)into consideration , one may approximate the exp(A) by 

where T is the matrix of eigenvectors of A , and takes the form 

where X is the matrix of eigenvectors of A, , which is orthogonal one , since 

A, is a symmetric matrix , then D is the diagonal matrix with 
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By using the orthogonality property of matrix x ,one can put the -I matrix 

in the following form 

substitute (4.23), and (4.24) in equation (4.22), to obtain 
2 

cosh - I, 
exp(A) = 

h 2 
2 

- sinh - I, I: h cosh - h 2 I, 
Then the z(") becomes 

2 cosh - I, 
~ ' " ' ( t )  = h 

2 2 
sinh - I, cosh - I, 

h h 
since 

.Pm)(t = 0) = ~ ( ~ ) ( t  = a) = em+, , m = 1(1)N, 
Hence 

(4.29) 

Now the system (4.16) is reduced to 

1 
By using the mean value theorem for integration , system (4.29) is reduced to 
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L 

where 

Let us put 

Hence , we can rewrite (4.3 1) as follows 

- - 1 
- 

2 
cosh( - a) 

h 

Now , all the initial conditions of the original system (4.10) are to be found , 
and the general solution is 

i X 

W (x) = exp(A x) W (0) + lexp(-~x,)f(x,) dx, , x E (0, a] (4.33) 
L 0 

where 
y (0 )  = 0 J(1)N (4.34) 

I 
and 

- f, (5 ,  ) 1 c o w  i x ) h  

- 

- [  fN (5,)- sin %I h 2 ] l c o s h ( ~ x ) &  
- 
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-Mb  
Y + N ( O )  = tanh 2(N+l)i , i = l(1)N 

2(N + 1) b 
substitute (4.25) , (4.34) and (4.35) in equation (4.33), to obtain 

W; (x) = 
2(N + 1)  

Mb2 [coShT (- tanh - 2(N+1)  a sinh ---- 2 ( N + l ) x - l , i = l ( l ) N  
4(N + 1)2 b b 1 

Mb 2(N + 1) W;. (x) = - sinh - x , i = l(1)N 
2(N + 1) b 

There are two different reasons of instability: 

(1) The instability, due to the positive exponential growth of the solution with the 
number of lines, increases . 

(2) The inherent instability of the resulting solution of the system of differential 
equations due to the high stiff ratio between eigenvalues ,and it becomes 

severe 
when the number of lines increases. 

It is noticeable that, the above two sources of the instability, are deduced from the 
nature of the analytical solution as it stands in equation (4. 60). But when the 
given equation (4.1) is treated numerically by the method of lines, the two 
common errors for the numerical computation, namely the truncation and inherent 
errors will be magnified by the above sources of instability. 

Now we are about to deal with the minimization of the effects of instability. 
For instance, since it is the product ( N + l )  which causes instability, it may in some 
cases be worthwhile using smaller integration distances x . This leads to the idea 
of the multi shooting technique which means that the interval of integration is 
divided into multi subintervals and some smoothing criterion is satisfied at the 
shooting points which in the interior of the subintervals. Also using a higher order 
difference scheme (say, "5" point scheme) for the second derivative enables us to 
use fewer lines to achieve the same accuracy for this second derivative. By using 
smaller number of lines we reduce the exponential growth of errors in the 
solution. Also the stiff ratio is reduced considerably. To avoid the instability due 
to the second effect mentioned above, we use an integration routine of the 
differential equation, which deal, with a stiff system. 

4.2 The Non homogenous Biharmonic Equation 

Now we consider the stability analysis for the bihannonic equation 
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where D = kx, y )  : 0 < x < a , 0 < y < b)  and f ( x ,  y )  E C(D) with the 
boundary conditions 

We consider two poisson equations , 

instead of the equation (4.37) . Now, as mentioned for Poisson's equation, the 
two partial differential equations are transformed to the following two coupled 
system of ordinary differential equations 

and 
d2wi wi+, -2w, + wi-] - + - J ; ( x )  ,w i (0 )=w, (a )=O , i = l ( l ) N  (4.4 1) 
dx2 h2 

b 
where h = - . 

( N  + 1) 
Let 

and 

Hence the coupled system (4.40) and (4.41) , can be rewritten'in the matrix vector 
form as follows 
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d - 
dx 

and 

d - 
m 

with 

and 
wi(0) = w,(a) = 0 , i = l(1)N (4.47) 

where the matrix A, as it is defined for Poisson's equation of the previous ,. 

analysis . The system (4.44) is coupled with the system (4.45) . Hence we solve 
svstem (4.44) with boundary conditions (4.46) , then solve the system (4.45) with 
doundary conditions (4.47). 
To solve the system (4.45) with (4.47) , we define firstly its adjoint system as 

with terminal conditions 

~'"'(a) = gm , m = l(1)N - (4.49) 
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one can obtain the solution of (4.48) by following the same analysis as in 
deriving equation (4.18) in the form 

(4.50) 

where t = a - x , then the initial value to Q takes the form 

Q(t = a )  = Q(x = 0 )  = - - (4.5 1) 

we use equation (4.51) in identity of adjoint method, one can obtain : 

2 
[:sinh (;x)(f, ( x )  - sin41 h2 ) u!x 1 

2 
-sinh ( -x) f ,  ( x )  u!x 

h 

Then, the missing initial conditions are 

(4.52) 

where 
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The solution to the original problem is now obtainable , as 

2b 
2b 2b cosh-a -1 

K(X) = 1 - cosh-x - sinh- X 
N + l  a 

and 
2b 

2b 2b cosh - 
z, (XI = - sinh - + cosh-x 

N + l  2(N + 1) 

It is easy to show that the missing initial conditions for equation (4.44) 

v, (0) , i = l(1)N are 
Q 
L 

cosh-a-1 
3Mh2 ( c o s ~ ~ ~ - c o ~ ~  vi (0) = - h , i = 1 (4.56) 

3 2 h 2 
sinsh-a h 

Then the solution of equation (4.44) is be represented as 
2 h  2 

u,(x) = I(x)cos~-x + -sinsh-x(v,(O) + m(x)) , i = l(1)N (4.57) 
h 2 h 

and 

where 
2 

2 cosh-a-1 
cosh-x-co~h'-x-~ h h 2 

sinh - a 
h 

(4.59) -. 

and 

L \ 

It is worthy at the present to conclude the following notes: 
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The source of the instability for Poisson's equation is attributed to (as mentioned 
previously ) the factor 2(N + 1)x due to its positively and its dependence on the 
number of lines N . A result which shows how the instability of the solution is 
affected by the number of lines. While for the biharmonic equation the source is 
due to the factor 4(N+l)x,which shows the linearity of the error growth with 
respect to N as the Poisson's equation but with double rate.This is a new fact in 
contradiction to what is usually expected of quadratic dependence of the error 
growth with respect to N . 

4.3 Nonlinear Second order Elliptic Equation : 

Now, to illustrate the generality of the considered method, let us consider the 
following nonlinear equation 

d2u d2u -+-- - exp(u) , 0 I (x, y) l 1 (4.61) 
ax2 ay2 

with homogeneous boundary conditions . We apply the method of lines to 
equation (4..61) , to get 

du, - = v i  , i=l( l)N 
G!x 

Such a system needs an iterative process to obtain its solution.We use the 
quasiline- arization technique to transform the system (4.62) to linear system and 
then the 

solution can be obtained iteratively . In the n th stage of iteration the system 
becomes 

, i=l( l)N (4.65) 
For the theory of the quasilinearization ,one can be consulted the references[2,19] 
.We consider only the solution ,when n is equal 1 and take the zero solution as 
an initial gauss . In general exp(u,(")) can be written as follows 
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= -Ai , i = l(1)N (4.70) 

The missing initial conditions are approximately given by 
h 2 

v,(')(o) G - - tanh(-) (4.71) 
2 h 

Then the solution of (4.68) is 

n-1 

exp( u j n ) )  = (1 + u f ) )  (1 + u!J+ ' )  - u! ' ) )  (4.66 ) 
j = I  

for n = 1 , the exp(@)) is 

exp(uy)) = (1 + u(l)) (4.67) 

Now, we rewrite the system in a compact form for n = 1 as follows 

u(l'(x) = 
1 

[cosh 2 ( ~  + 1)x - tan.  2(N + 1)sinh 2(N + lx - 11, 
4(N + 1)2 

(1) N + l  v (x) = - [sinh 2 ( ~  + l)x] , i = l(1) N 
2 

Then one can use this technique to construct the solution of stage 2 , and so on . 
Despite that the original equation is nonlinear its solution (4.72) (first 

iteration ) is typical to that Poisson equation . Consequently its stability condition 
is exactly the same as that of Poisson's equation . Moreover , due to the linearity 
of error growth with respect to the number of lines , one can conclude an 

where A', = A, + 1 . The boundary conditions for system (4.68) are 

u(0) = g - 
~ ( 1 )  = !! (4.69) 

This system cannot be solved , directly , thus we first estimate the missing 
conditions ~ ( 0 ) .  

The eigenvalues of the system (4.68) approximately given by : 
2 

il, = -sin l + i  
sin2 (in l2(N + 1)) 

- - 
0 

0 

i 
1 

1 - - 

[:I+ - [:] - 
(4.68) 

- - 

0 N . N  . I N  

.......... .......... .......... . 
A ' 1  O N , N  

L - 
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important result that the invariance of the stability conditions with respect to 
iterative computational algorithm . 

5. A GENERAL ALGORITHM FOR THE STABILITY ANALYSIS. 

The stability of the method of lines for partial differential equations 
represents the most important factor for their solutions and at the same time is a 
critical factor that should be handled carefully. The importance lies in its unique 
ability of judging acceptable solution for the given equation , of being critical is 
due to its dependence on the nature of the eigenvalues of the matrix representation 
connection with their number . A typical example of the danger inherent from 
such dependence is the application of the method of lines to partial differential 
equation of elliptic type , for which there exist exponential dependence of the 
eigenvalues of the matrix representation and the number of lines of the spatial 
variable , which in turn may lead to exponential growth of errors as the number of 
lines increases . 
On the other hand , the parabolic and hyperbolic partial differential equations 
when treated numerically by method of lines gives non positive exponential 
dependence of the eigenvalues of the matrix representation on the number of 
lines , which leads to exponential decay of the errors as the number of lines 
increases . This last fact may explain why the stability analysis of the method of 
lines for parabolic and hyperbolic equations are of common appearance in various 
publications . As for as the computational design of the stability analysis of 
method of lines is concerned , any plan for a general algorithm should consider all 
types of partial differential equations without particularization to certain type . 
This is because , in mathematical physics problems and other branches , all types 
appear with equal chance , moreover in some problem of mixed type we have to 
consider more than one type at the same time . Consequently , the need is ergent 
for such general algorithm , in what follows , the computational steps for such 
algorithm one given just to illustrate the rate the strategy of our plane for 
package formation for method of lines 

1. Discretize all independent variables , but one . 
2. All partial derivatives of the dependent variable are approximated 

by suitable finite difference operators . 
3. If the resulting system of ordinary differential equations is of the 

boundary value type . 
go to step 4 . j 

Else go to step 5. - 
4. Transform the boundary value problem into initial value problem 
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using the adjoint shooting technique or other suitable technique . 
5. The resulting system is of the form 

(A) B(x) E(x)  = 4 x 1  W(x) + a x )  
For linear partial differential equations where W(x) is the solution 

vector. 

(B) D(x) @'"'(x) = C(x) c ( x )  + ~ ( x ,  w("-" (x) , w '"-" (x)) 
For nonlinear partial differential equations when using 

quasilinearization 
technique to transform the nonlinear system to sequence of linear 

system 
which is solved iteratively where (n) is the 
iteration stages , n = l(1) ... 

6 . If The real part of the eigenvalues of the matrix representation are 
nonpositive 

Then The solution is stable . 
The solution is unstable , so using the previous recommendation to 

minimize the effect of instability . 
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