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ABSTRACT - Numerical calculations of heat transfer and flow field characteristics of turbulent
recirculating flows on forward-facing steps are presented in this paper. The calculations are
based on the {(k - £) model. In the vicinity of the wall a linear vorticity distribution model
was used. The (k - &) model has improved to account for the streamline curvature and the

Reynolds stresses, and the computer program was also improved with a finite difference and
iterative technique.

The present results include computed heat transier coefficients, streamlines and

isothermal lines, velocity profiles and kinetic energy distributions at different Reynolds numbers
and different step heights.
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One of the significant results in this study js the influence of the step height on
the size and location of the separation regien and reattachment point. It was found that
the heat transfer mechanism is positively influced by larger step sizes. The size of the isother-
mal lines becomes smaller and closer to the wall by larger steps. This result is noliced both
upstream and downstream of the step.

INTRODUCTION

One of the most important aspects of turbulent flow is that which occurs at or
near Separation. Besides being an important basic science, the problem of separated flow
and recirculation finds a lot of engineering applications. The effective design of many thermal
process components depends thoroughly on the recognition and accounting for the role of
tarbulent motion immediately adjacent to the wall. On a larger scale recirculating {low plays
an important role in building aercdynamics. The effective study of disturbing winds in ground
levels ameng building depends crucially on recognition of the vortices formed by recirculating
flows on the walls and roofs.

The presence ol a recirculating wall boundary layer greatly influences the process
of heat transfer in separated flows. It has been shown experimentally that the heat transfer
coeflicients are considerably larger than those on attached boundary layers. The increase
in the convective: heat transfer process can be explained, in principle, as being due to the
increase in streamwise turbulent kinetic energy in the mixing layer.

The problem of flow characteristics and heat transier in recirculating Ilows has
taken a good share in literature. References {1] - [3] are some of the important research
works in this field. The problem of forward facing steps finds fess interest in the literature
although it has many engincering applications. Correlations of experimental and numerical
data on turbulent recirculating [(lows over over steps remains scarce indeed. However, the
fundamentals of the numerical technique for this and similar problems has been well established.
Gosman et.al. [4] proposed in details the fundamentals of the computations of recirculating
flows. W. Frost et.al. [5) analyzed the atmospheric flow over a two-dimensicnal forward-facing
step, using a k-& computational model. Lakshminarayana [6) gave a review of different
turbulence models comparing the various methods available to predict such flows and their
performance. The k-gmode) was given a critical emphasis in a study by Rodi, W. [7].

The present work handles the problem of [luid fiow and heat transier together over
a forward facing step. The computations are done for variable Reynolds numbers and on different
step heights using the k-& computational model. The f{low field includes turbulent velocity
proliles before the step, turbulent separation and recirculation over the step and reattachment
of the flow down stream from the step. The thermal field amalyzed assumes a constant heat
current such that the temperature gradient (dT/dx) in flow direction is very small. The purpose

of the paper is to present the results obtained by applying the k-& model over forward facing
steps. numecically analyzing both the flow ficld and the thermal field.

COMPUTATIONAL MODEL

In the following paragraphs only a brief outline of the mathematical model and computa-
tional procedures are given, Full details arc given in references [1,4,5). Figure {1} shows the
forwardfacing step with the numerical model superimposed on it. The grid is non uniform
as shown. The corrdinate system was chosen such that the origin was located at the lower
step corner with the positive x-axis pointing in the downstream direction. The y-axis is normal
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to the surface of the plate parallel to the step wall. In this coordinate system the flow {iel|
extends and covers 1l times the step height in the downstream and upstream direction, an |
about 10 times in the vertical direction.

GOVERNING EQUATIONS

The turbulent mean flow equations for a two-dimensional flow field are those for

momentum .
__7 —
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and the turbulent viscosity).lt is piven by
_ 2 Ty Oua? ... (1)
L= ek’ e =TT @)

the constants are

1.4 2.0 0.07 1.0 1.3 0.9

The heat transfer coefficient can be calculated from

07

qW: ?;)’lyzozh(T\v_T‘”)’ <o 01
which gives
h:-?&—%T [T, - To) cee 12
1 y=0

When the momentum equations {1} and (2) are differented with respect to ¥ and x °
respectively, the resultant equation is substituted in (3) with (4) and (5) to Yield the vorticity
equation in th from

2
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Substituting egquations {3), (4) and {5) yield
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equations (3), (4) and (8) give the thermal energy equation in the form

o

M
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The turbulence energy equation is obtained from equations {3). (4) and (7) in the form.
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The equation for the dissipation rate is then given as ,
&
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The mathematical problem posed in this paper relies on the solution suggested oy
Gossman et.al [4). The solution algorithm utilizes the stream function and the vorticity variables.
The governing equations for the stream function, vorticity, thermal energy, kinetic energy
and rate of dissipation are cast in an elliptical partial differential equation suitable for simulta-
neous numerical integration. This differential equation is then replaced by integration over
finite areas. The asymptotic functions a, b, ¢, d are given in table (1} as follows :
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Table . Functional constants a, b, ¢, d

BOUNDARY CONDITIONS

The nature of the complicated prescnt problem dictates that boundary conditions
are prescribed along the entire boundary of the [low region. Following Fig. (2) along the
inlet, the outlet and the upper and lower boundaries, the boundary conditions were implemenied
as follows .

Inlet and Qutlet
The grid system utilized is so large that it is assumed the wall boundary layer is
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only a small portion of the flow region subject 1o analysis. Thus it is taken that free stream
velocities Uee and free sircam temperature Tes are at inlet and outlet. The maximum vertical
distance at inlet Y, is of a definite ratio to the maximum vertical distance Y2 at outlet.
such that the contindity equation remains satisfied.

Upper face

The location of the upper boundary was assumed far enough that streamline deflections
caused by the step were negligibly small. Ceonsequently v = O; u = Use , T = Tl , dw/ax =0

and W = Us. Y (NN}, where (Y {NN,) is the highest mode in the grid in the vertical direction.
The turbulent kinetic energy is given as

k = (0.1)2 ® (1.5 vl Y,
and
ok /fBx =0

The rate of dissipation of energyy is given as
&= 0.59%%x UL 7 (0s v (NN,) )

Lower face

As the free stream is paralle! to the solid boundary, the stream function is zero at the wall

Yo 0. The vorticity is more complicated since it derives essentially the flow. According
to [5]
-3 N{J -¥)
W oz ----2 . ;
Yo ()

where the subscripts W means the wall, and b means the second mode {rom the wall in Y-
direction.

RESULTS AND CONCLUSIONS

In this study numerical calculations were made using the k -E model for a turbulent flow field
and heat transfer around a forward facing step. Three step heights were investigated

H = 0.0102 m ; H = 0.0236 m ; H = 0.0406 m .
The free stream velocity was kept constant Uss = 24 m/s. The results are presented
in figures 3 - 12 in a non-dimensional parameteric form. The Reynolds number and the Nusselt
number were taken with respect to the step height H. Thus the variables reduce to x/H ;

A VN _h.H
Y/H ; Re = =5 and Nu = T

Figures 3, 4 and 5 show the streamline (V) patterns for the three different step heights
HIY, = 0.051, 0.118 and 0.203, i.e. for three different Reynolds numbers. Comparing the
various streamline patterns one notices that there are two main separation regions (recirculating
vortices) around the step, one vortex upstream and one vortex downstream the step. The
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shapes and sizes of these vortices vary in vertical and horizontal distances from the step.
[t is clear from the figures that the aft vortices behave in a diffecent manner that the front
ones. In front of the step the smaller vortices helong to larger steps, where as the larger
aft vortices belong to the larger step heights. This means that the height o_(‘the step has
a negative effect on the size of the separation region upstream, but a positive effect on
that downstream of the step. .

fn the same figures {3-5) isothermal (8) lines arc ploited, for the same Reynolds
numbers. The figures show clealy two distinct isolbermal regions upstream and do?.rngtream
the step. The size of the votex becomes smaller with larger heights of the step. This is true
for both front and aft isotherma! regions. Physically this is explained by larger heat transfer
in the separation region. When the isothermal region is small it means that it lies closer
to the wall and this helps in the heat transfer process. This physical conclusion is further
explained in figures 11 and 12.

Figures 6, 7 and 3 show the velocity profiles for different step heights H/Y = 0.051,
0.118 and 0.203. The velocity distribution gives more nformation about the separated regions
than the stream functions. The amount of overshoot and the size of the back flow are very
clearly shown in these profiles.

The turbulent kinetic energy contours in figures 9 and 10 reveal that the turbulence
kinetic energy levei in the shear layer grows from the step corner. One notices that high
turbulence intensity extends throughout a region of | to 2 times the step height above the
surface. It decays however downstream [rom the step, as the flow goes over in the flat plate
boundary layec.

In figures {1 and 12 the variation of the Nusselt number along the entire Ilow field
is represented. The heart transfer characteristics seem rather complicated in the separated
regions. Neverthless they indicate an increase of heat transier around the step.

in figure {11) the Nusselt numbec at a step height H/Y = 0.051 is plotted for three
different free stream velocities. It is noticed that the heat lransier coefficient increases
as the Reynolds number increases. It has two maxima before and after the step. this result
harmoenizes with the conclusive remarks given in discussing the isothermal lines.

In figure (12) the Nusselt number variation is presented for the same free stream
velocities Uge = 12 ;5 18 and 24 m/s as in figure (11), for a step height of H/Y ., = 0.203. The
resulting plots are very similar to those of Fig. (11). However, the Nusselt number reaches higher
values {almost twice) than those with the lower step. The maxima of the curves are away
from the corner of the sten, one upstream and one downstream .

It is worth mentioning that the computational analysis for both fiow field and heat
transfer s very complicated, Yet the results are very cncouraging. The authors feel however

that some more serious works are necded 1o apply the K - £ model for walls with more complex
goemetry .

NOMENCLATURE

a, b, ¢ = functional constants in transport equations, given in table (1}
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Cis €y .= asymptotic constants contained in transport equations,

C = Pressure coeflicient

CE = Asymptotic constant in equation (10)

d = Source term in vorticity equation

G = Coefficient variable in equation for turbulent kinetic energy

h = heat transfer coefficient

H = step hight

£ = turbulence kinetic energy

T = temperature

{1 = maximum vertical distance at inlet to grid system

Ys = maximum vertical distance at oulct from grid system

u = dynamic viscosity of fluid

v = kinematic viscosity of fluid

P = density of fluid

£ = dissipation rate function

¥ = siream function

9 = isothermal function

w = vorticity function
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