Electronics 1 Final-Term Exam Time allowed: 3 Hours

Answer the following questions; assuming any missing data.

- 1) a- Discuss the applications of the Darlington pair.
 - b- Write an expression for the input impedance of the common collector amplifier as a function of the impedances connected to the emitter terminal.
- 2) For the emitter follower (Common collector) in Fig. 1, the signal source is directly coupled to the transistor base. Find the dc emitter current. Assume $\beta = 100$. Neglecting r_o, find R_{in}, the voltage gain v_o/v_{sig} , the current gain i_o/i_i and the output resistance R_{out}.
- 3) The amplifier shown in Fig. 2 has $R_{sig} = R_L = 1 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$, $R_B = 47 \text{ k}\Omega$, $\beta = 100$, $C\mu = 0.8 \text{ pF}$, and $f_T = 600 \text{ MHz}$.
 - (a) Find the dc collector current of the transistor.
 - (b) Find g_m and r_{π} .
 - (c) Neglecting r_o , find the midband voltage gain from base to collector (neglect the effect of R_B).
 - (d) Use the gain obtained in (c) and the Miller theorem to find the component of R_{in} that arises as a result of R_B . Hence find R_{in} .
 - (e) Find the overall gain at midband.
 - (f) Find C_{in} .
 - (g) Find f_{H} .
- 4) Use the circuit of Fig. 3 to design a common gate amplifier. Find R_{in} , R_{out} , A_{vo} , A_v , G_v , and Gi for $R_L = 15 \text{ k}\Omega$ and $R_{sig} = 50 \Omega$. What will the overall voltage gain become for $R_{sig} = 50 \Omega$? 10 k Ω ? 100 k Ω ?
- 5) The circuit shown in Fig. 4 consists of two stages:
 - **Stage 1**: CE amplifier with $V_{cc} = 12 \text{ V}$, $R_c = 1.0 \text{ k}\Omega$ and $r_e=5\Omega$. **Stage 2**: Darlington emitter follower amplifier with voltage divider bias, given $R_1 = 10 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_E = 22 \Omega$, $R_L = 8 \Omega$, $V_{cc} = 12 \text{ V}$ and $\beta_1 = \beta_2 = 100$.
 - a) Determine the voltage gain of the common-emitter amplifier.
 - b) Determine the voltage gain of the Darlington emitter-follower.
 - c) Determine the overall voltage gain.
 - d) If the circuit is without the Darlington pair, find the gain and compare with that obtained in C.

##