Mansoura University
Faculty of Engineering
Electronics and Communications Engineering Department

Digital Circuits 1-COM 9124	Exam Time: 3 hours
Exam Date: June 5th, 2013	Total Marks: 70 Marks
1st year Electronics - 2nd Term	Closed Book term exam

Important Instructions:
1 This exam contains 6 questions:
Q1) 10 MCQs (4 choices each) --> Mark your answer selection in the MCQ answer sheet in the middle of the answer booklet Q1-Q15
(page 2-15 Marks)
Q2) 10 Questions (Fill the blanks with pre-selected words) --> Write ONLY your answers in the answer booklet
(page 3-15 Marks)
Q3-Q6) 4 Regular technical questions --> Write your answers in the answer booklet
(pages 3 \& 4-40 Marks)
2 Use "MCQ + 4 pages" answer sheet.
3 Atempt all questions.
4 No calculators are allowed in this exam.
5 No external materials are allowed in this exam.
My best wishes to YOU!

Dr. Sameh Rehan

Note: This exam has questions on both sides of the two questions' sheets.

Closed book term exam	3 hours - 70 Marks
Digital Circuits 1-2nd term - COM 9124	June 5th, 2013
1st year electronics engineering students	page 2 of 4

Q1) Answer the following 10 MCQs in the MCQ sheet in the answer booklet:
(+1.5 Marks for each correct answer, zero Mark for each wrong answer, zero Mark for unanswered question)
(Total of 15 Marks)

Q1-1 A circuit that converts a digital waveform to an analog signal is commonly called a(n) \qquad -
(1) PLD
(3) DAC
(2) ADC
(4) $C A D$

Q1-2 When using negative logic \qquad .
(1) $\mathrm{HIGH}=1$ and LOW $=0$
(3) $\mathrm{HIGH}=0$ and $\mathrm{LOW}=1$
(2) $\mathrm{HIGH}=0$ and LOW $=-1$
(4) $\mathrm{LOW}=-1$ and $\mathrm{HIGH}=1$

Q1-3 The math symbol for time of transition from HIGH to LOW is \qquad .
(1) t_{r}
(3) t_{W}
(2) T
(4) tf_{f}

Q1-4 For a negative-logic pulse, the leading edge is the \qquad .
(1) LOW-to-HIGH transition
(3) rising edge
(2) positive-going edge
(4) negative-going edge

Q1-5 The output of an AND gate is HIGH \qquad .
(1) only when all inputs are LOW (3) when at least one input is LOW
(2) only when all inputs are HIGH
(4) no answer is correct

Q1-6 Two kinds of data selectors are \qquad and \qquad .
(1) encoders, decoders
(3) comparators, registers
(2) multiplexers, demultiplexers
(4) adders, subtractors

Q1-7 Which converts data from a serial to a parallel form?
(1) Comparator
(3) Encoder
(2) Demultiplexer
(4) Multiplexer

Q1-8 This is the timing diagram for a 2-input \qquad gate.
(1) NAND
(2) AND
(3) XOR
(4) NOR

Q1-9 This is the truth table for $a(n)$ \qquad .
(1) OR
(2) NOR
(3) AND
(4) NAND

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

Q1-10 The number of binary digits that are required to count to decimal 60 is:
(1) 7 bits
(3) 6 bits
(2) 8 bits
(4) 5 bits

Closed book term exam	3 hours - 70 Marks
Digital Circuits 1-2nd term - COM 9124	June 5th, 2013
1st year electronics engineering students	page 4 of 4

Q5)
a- Draw the basic logic diagram (using only basic logic gates) of a decimal-to-BCD encoder.
(total of 10 marks)
(total of 5 marks)
b- For the shown parallel adder, determine the complete sum by analysis of the logical operation of the circuit. Verify your result by longhand addition of the two input numbers.
(total of 5 marks)

Q6)
For the 7 -segment decoding logic, a BCD number is used as the input and the 7 outputs are used to activate the corresponding segments of the display. The arrangement of segments is as shown here:
a- write down the truth table (use X to represent don't care output) for all 7 segments.
b- develop the optimized product of sum Boolean logic expression of the "e" output segment using Karnaugh map.
(3 marks)

c- develop the optimized logic circuit using only NOR gates.

Closed book term exam	3 hours - 70 Marks
Digital Circuits 1-2nd term - COM 9124	June 5th, 2013
1st year electronics engineering students	page 3 of 4

Q2) Fill the blanks (by selecting from the listed words) in the answer booklet for the following questions:
(+1.5 Marks for each correct answer, zero Mark for each wrong answer, zero Mark for unanswered question)
(Total of 15 Marks)
(NOT, OR, AND, NAND, NOR, XOR, XNOR, rise time, fall time, amplitude, transition time, period, pulse width, zero, infinite, positive-going edge, negative-going edge, Multiplexer, Demultiplexer, Encoder, Decoder, LOW, HIGH)

In the shown nonideal pulse:

Q2-1 Item (1) represents \qquad .
Q2-2 Item (2) represents \qquad -.
Q2-3 Item (3) represents \qquad -.

Q2-4 Item (4) represents \qquad .

Q2-5 The \qquad gate performs as switches wired in parallel.

Q2-6 The \qquad gate can be used to add two bits.
Q2-7 For a positive-logic pulse, the trailing edge is the \qquad .
Q2-8 The \qquad circuit creates an output LOW to indicate that the input values are equal.
Q2-9 The \qquad circuit converts a specific coded form into known information.
Q2-10 In the NOT digital circuit, a \qquad input gives a HIGH output.

Answer the following requiar questions in the answer booklet: (4 questions)
(both wrong answers and unanswered questions have zero marks)
(total of 40 marks)
Q3) For the half-subtractor logic circuit:
(total of 10 marks)
a- draw the logic symbol.
b- write down the truth table.
c- develop the logic implementation using only basic logic gates.
d- form a full-subtractor circuit using half-subtractors and any required gates.

If the data-select inputs to the shown multiplexe, are sequenced as shown by the shown waveform determine the output for the following input stat $\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=0, \mathrm{D} 3=1$

