1-a- Define the following terms:
[25 marks]
$\begin{array}{lc}\text { i- Beak away (in) Points } & \text { ii- Angle of asymptote. } \\ \text { iii- Departure angle } & \text { iv- Sustained Oscillation frequency }\end{array}$
-b- For the unity feedback system $\mathbf{G}=\frac{K(S+2)}{S^{2}+2 S+3} \quad$,Construct the root locus.
then find:- i-Departure angle.
ii- The Break in point \& the corresponding Gain.
iiii- - The roots and Gain for $\zeta=0.7$
iv- The roots of the system at break in point.
2-a- Define the following terms:
[18 marks]
i- Gain cross-over frequency. ii- phase cross-over frequency.
-b- A control system has a forward transfer function $G(S)=\frac{5.7}{(S+1)(S+3)}$ and a negative feed-back transfer function $H(S)=\frac{4}{S+2}$, find both the gain and phase margins of the system using bode diagram.
3 -a- Define the following terms:
[20 marks]
i- Gain margin ii- phase margin
-bo- A control system thas open-loop transfer function $G(S) H(S)=\frac{K(S+1)}{S(1+0.1 S)(1+0.4 S)}$ using logarithmic plots find: i) The value of \mathbb{K} such that the Gain margin 22 db , then find $\Phi \mathrm{M}$
ii) The value of \mathbb{K} for a phase margin 45° then find GM

4- Fig (1) shows the log magnitude plot, determine the transfer function of the system and the system type

