MANSOURAH UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDERALUIC DEPT.

John Com

4th YEAR CIVIL ENGINEERING JANUARY, 2011

TIME ALLOWED: 4 HOURS

DESIGN OF IRRIGATION WORKS (II)

N.B. 1- All Sketches should be clear, neat and well proportioned.

2- Any missing data may be reasonably assumed.

3- Maximum mark of exam = 100.

QUESTION (I): (28 Marks)

i) Show by a sketch how the weirs can be used for decreasing the slope of water surface in canal.

ii) Compare between the weirs and regulators.

iii) Sketch the longitudinal section elevation of a stepped weir and show general equation of the thickness of the floor.

iv) A weir has to be built on a main lined canal according to the following data:

	U.S. Weir	D.S. Weir
High Water Level	(15.00)	(14.70)
Low Water Level	(14.70)	(14.40)
Bed Level	(11.00)	(11.00)
Bed Width	8.00 m	8.00 m

Canal side slopes= 3:2

Max. Canal discharge = 50.0 m³/sec.

Min. Canal discharge = 40.0 m³/sec.

Bligh value= 15

It is required to:

- a) Define the weir type.
- b) Crest level and Crest length.
- c) Draw uplift diagram.
- d) Calculate the floor thickness.
- e) Draw a neat sketch showing the longitudinal section elevation of the weir.

QUESTION (II): (30 Marks)

An <u>Intermediate Regulator</u> has to be built on a canal with the following data:

	U.S Regulator	D.S. Regulator
High Water Level	(10.00)	(09.00)
Low Water Level	(09.50)	(08.50)
Canal Bed Level	(06.00)	(05.00)
Side Slope	3:2	3:2

Maximum discharge = 95 m³/sec.

Mean Velocity in Canal = 0.70 m/sec.

Width of bridge above regulator = 12.00 m

Bligh's Coefficient = 12.

It is required to:

- a) Name the different type pf regulators.
- b) Determine the number of vents if the span of vent is 5.00 m.
- c) Design the floor of the regulator showing the Uplift diagram and the floor thickness.

Aur	20% 4
~	PI

- d) Calculate the stresses at the base of the pier for case of maximum bending moment about the pier centerline in the transverse direction (M_x) , consider a uniformly distributed live load of $1.50 \ t/m^2$ and the dead load of the bridge is to be $1.00 \ t/m^2$.
- e) Draw to a reasonable scale a plan and longitudinal section through a regulator vent. Show all main dimensions.

QUESTION (III): (25 Marks)

- i) Sketch the different cases of the bridge location with respect to the lock chamber and compare between them..
- ii) A Symmetrical Lock has to be built according to the following data:

	U.S. Lock	D.S. Lock
Water Level	(9.50)	(8.50)
Bed Level	(5.50)	(5.50)

Lock Chamber = 160 x 17 m.

Angle between gates = 135°.

Level of upper pivot = (10.00).

The time of filling or emptying the chamber of the lock is 12 minutes.

It is required to:

- a) Design the side culvert.
- b) Calculate the <u>Thrust Force</u> at upper pivot for the gate of the lock for the case of "During Operation".
- c) Select the empirical dimensions of the lock parts and draw a plan.

QUESTION (IV): (25 Marks)

- i) Site conditions and rock foundations play an important role in determining dam type and cost. Discuss the suitability of the concrete dams for site conditions.
- ii) Discuss the effect of the concrete dam frequency in relation to the frequency of earthquakes?
- iii) Discuses the function of control galleries in dams and the precautions you would suggest to minimize the uplift below the dam body.
- iv) The figure shows a non-overflow cross-section of a gravity dam. It is required to calculate the stresses of the resultant forces acting on the dam base.

The following conditions should be considered:

- 1- Full reservoir and no tail water.
- 2- Horizontal earthquake acceleration acting upstream.
- 3- Horizontal seismic coefficient = 0.1g.
- 4- Vertical earthquake acceleration acting upwards.
- 5- Vertical seismic coefficient= 0.10g.
- 6- Consider uplift pressure.
- 7- Specific gravity of dam material = 2.35.

6.0 m

Prof. Dr. Mahmoud Elgamal and Exam Committee.

Elmansoura University
Faculty of Engineering
-Irrigation & Hydraulics Department
Design of Irrigation Works (II)

Fourth Year Civil Eng. January, 2011 Time Allowed: 4 Hours نظام قدیم

N. B.: 1) All sketches should be clear, neat, and well proportioned

2) Any missing data may be reasonably assumed

Question 1: (20 marks)

- a) Discuss the different types of the weirs and how are the weirs classified with respect to their functions.
- b) A Fayoum type weir is proposed to be constructed across a main canal with 10 ms width, side slopes 3:2, and discharge of 30.0 m³/sec. The following data is available:

High U.S water level = 21.50 m

High D.S water level = 20.50 m

Bed level U.S the weir = 19.10 m

Bed level D.S the weir = 17.80 m

It is required to:

1) Make a complete hydraulic design for the weir.

2) Design the floor of the weir structure assuming Bligh's coefficient = 15.

3) Draw a sectional elevation of the structure showing all important dimensions and the precautions required to prevent the undermining of the soil tail erosion.

Question 2: (35 marks)

A regulator adjacent to an unsymmetrical lock has to be built on a main canal according to the following data:

	U. S. Regulator	D. S. Regulator
High Water Level	(22.70)	(21.90)
Low Water Level	(22.00)	(21.20)
Canal Bed Level	(18.40)	(18.40)
Side Slope	3:2	3:2

-Max. discharge $Q = 60.0 \text{ m}^3/\text{sec}$; mean velocity in canal V = 0.65 m/sec; width of bridge above regulator = 12.00 m; Bligh's Coeff. = 12.0

It is required to:

- a) Name the different types of regulators and steel gates (net sketches are required)
- b) Determine the number of vents if the span of vent is S = 5.00 m.
- c) Design the floor of the regulator showing the Uplift diagram and the floor thickness.
- d) Calculate the stresses at the base of the pier for case of maximum bending moment about the pier centerline in the transverse direction (M_x), consider a uniformly distributed live load of 1.50 t/m² and the dead load of the bridge is to be 1.0 t/m².
- e) Draw to a reasonable scale a longitudinal section through a regulator vent, and cross section half earth removed. Show all main dimensions.

Question 3: (30 marks)

A symmetrical lock will be constructed on a main canal for navigable requirements. The following data are available.

	<u>U. S.</u>	<u>D. S.</u>
Water Level	(50.00)	(47.00)
Bed Level	(46.00)	(44.00)

Minimum depth of water in the lock chamber = 3.0 m.

Lock chamber dimensions (17.0 m x 120.0 m).

The upper pivot level of the lock gate is (50.00).

Angle between lock gates is 140°.

The time of filling or emptying the chamber of the lock is 12 minutes.

It is required to:

- a) Design the side culvert.
- b) Show how to design the thrust wall for the case of during operation.
- c) Draw to a reasonable scale a plan of the lock.

Question 4: (25 marks)

- a) Discuses the function of control galleries in dams and the precautions suggested to minimize the uplift below the dam body.
- b) The figure shows a non-overflaw cross-section of a gravity dam. It is required to calculate the stresses of the resultant forces acting on the dam base.

The following conditions should be considered:

- 1- Full reservoir and no tail water.
- 2- Horizontal earthquake acceleration acting upstream with seismic coefficient = 0.12.
- 3- Vertical earthquake acceleration acting upwards with seismic coefficient = 0.12.
- 4- Consider uplift pressure.
- 5- Specific gravity of dam material = 2.30 t/m^3 .

Best wishes

Prof. Dr. Mahmoud El-gamal Dr. Khaled Abdel-Azeez Exam Committee