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ABSTRACT 
A finite element solution of the regularised long wave equation based on 

collocation method using quintic splines as element shape functions, is set up. 
A linear stability analysis shows the scheme to be unconditionally stable. Test 
problems, including the migration and interaction of solitary waves, are used to 
validate the method which is found to be accurate and efficient. The three 
invariants of the motion are evaluated to determine the conservation properties 
of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then 
studied. 

INTRODUCTION 

The regularised long wave equation (RLW) is an important nonlinear wave 

equation. Solitary waves are wave packets or pulses which propagate in nonlinear 

dispersive media. The dynamical balance between the noniinear and dispersive 

effects of these waves retain a stable wave form. A soliton is a very special 

type of solitary wave which also keeps its wave form after collision with other 

solitons. 

The regularised long wave (RLW) equation is an alternative description of 

nonlinear dispersive waves to the more usual Korteweg-de Vries (KIDV) equation 

(Peregrine). It has been shown to have solitary wave solutions and to govern a 

large number of important physical phenomena such as shallow water waves and 

plasma wave (Peregrine and Abdulloev er al.). 

Few analytic solutions are known. Approximate solutions based on finite 

difference techniques (Eilbeck and McGuire), Range Kutta and predictor corrector 
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methods (Bona et al.) and Galerkin's method (Alexander and Morris), are also 

well known. Wahlbin using a trial function composed of hermite cubic 

polynomials, while Alexander and Morris constructed a global trial function 

mainly from cubic splines. In the latter case the closure at the boundaries 

affected with quintic polynomials and an implicit finite element approach is 

used, in which the element matrices were not explicitly formed, but the global 

trial function was used directly to determine the global equations. Alexander 

and Morris solved the resulting system of ordinary differential equations using 

the IMSL Library (1975) routine DREBS. Recently Gardner sets up an implicit 

finite element solution using cubic splines (Hearn) as the element "shape" and 

weight functions throughout the solution region, and the Galerkin's method. In 

the present paper we set up explicit finite element solution using quinitic 

splines as the element "shape" and weight functions throughout the solution 

region. The element matrices are determined algebraically, and the equations 

governing the problems are obtained by explicitly assembling together the 

element matrices to obtain the full global matrix equation. The time integration 

used to solve the resulting system of ordinary differential equations involves a 

Crank-Nicolson scheme together with an inner interaction to cope with the 

nonlinear term and details of this method is given in section 2. A linear 

stability analysis of the numerical scheme shows that it is unconditionally 

stable. The finite element method is shown to represent accurately the migration 

of a solitary wave. Finally the evaluation of a Maxwellian initial condition 

into stable solitary waves is investigated. 

THE GOVERNING EQUATION 

The RLW equation for the long waves propagating in the positive x-direction 

has the form Peregrine): 

v  + v  + v v  - vv =o, 
t X X xxt 
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where v is a positive parameter and the subscripts x and t denote the 

differentiation with respect to x and t respectively, with the physical boundary 

condition V-+ 0 as x++m. 

Using the mapping U = V + 1 we can transform this equation to 

U , +  UU - v u  = o  
X xxt (1) 

with boundary condition U+ 1 as x++m. In this paper we consider the RLW 

equation to be of the form (1) and use the periodic boundary conditions for a 

region a 5 x s b. The form of the initial pulse is chosen so that at large 

distances from the pulse the function U tends to 1 to agree with the physical 

boundary condition. The region is partitioned into N finite elements of equal 

length h by the knots x, such that a=xo<xl< ... < x,, = b. The quintic splines $ 
1 i 

with knots at x. form a complete basis for the functions defined over [a,b]. A 
1 

global approximation UN(x,t) to the solution U(x,t) is given by 

N+2 

U,(XU = 1 s p  mp (2) 

i=-2 

where the 6.'s are the time dependent quantities to be determined. Each quintic 
1 

spline spans 5 finite elements, so that 5 splines cover each element. The spline 

$,(x) and its 2 principal derivatives vanish outside the region [xt3 ,xi+3]. In 
1 

Table 1 the values of $. and its principal derivatives at the relevent knots are 
1 

listed. At the knots x. the numerical solution UN(x,t) is given by 

The function U and its first two derivatives are continuous across element 

boundaries. We substitute (2) into (I), identify the collocation points with the 
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knots and use equation (3) to evaluate U. and its space derivatives (Prenter). 
1 

Table (1): The quintic spline 4) 

Thus implementing the method of lines leads to a set of ordinary 

differential equations with the form 

i = 0, 1, ..., (4) 

Where : Z. = 6i-2 + 266i-1 + 666, + 266i+1 + 8i+2 
1 

The system of ordinary differential equations (4) may now be solved using 

an appropriate software package, for example, by using the routine DOZCAF of the 

Numerical Algorithms Group program library. 

In an alternative approach, which is used in this paper, a recurrance 

relationship based on a Crank-Nicolson approximation in time is derived. Suppose 
T 

that d = (6-2, 6-1, 60, ..., &+2) , if the vector of nodal parameters, is 

linearly interpolated between two time levels n and n+l, then d and its time 

derivative are given by 

1 n+l n 1 n+l n 
d = -(d + d ), d = -(d - d ) ,  

2 At 

where dn are the parameters at the time f i t .  Hence using Eq.(5) in (4), we have 
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n+l n 

for each knot an equation relating parameters at adjacent time levels, Si to 6i 

where : a = 1-R Z.-R a = 26-10R1Z;2R2, 
il 1 I 2' i2 

a = 66+6R2 , 'i4 = 26+10R1Z;2R2, a = 1+R Z -R 
i3 S 1 i 2' 

5At 20v 
Z = 6i-2 + 266. + 666, + 266i+1 + q+2, RI = - 

1 2h 
and R2 = - 

1- 1 h2 ' 

The system (6) consists of N+1 nonlinear equations in N+5 unknowns (6-2, 6-1, Z0 
T 

, ..., ijN+2) . TO obtain a solution to this system we need 4 additional 

constraints. These are obtained from the boundary conditions, and can be used to 

eliminate 6-2, h+2 from the set (6) which then becomes a matrix 
'I' 

equation for the N+1 unknowns dntl = (So. 61, 62, ..., Q . 

n n 
where A(d ) and B(d ) are pentadiagonal matrices, and r is an N+1 vector which 

depends on the boundary conditions. 

The time evolution of the approximate solution UN(x,t) is determined by the 

time evolution of the vector dn. This is found by repeatedly solving the 
0 

recurrence relationship once the initial vector d has been computed from the 

initial conditions. The recurrence relationship (7) is pentadiagonal and a 

direct algorithm for the rapid solution of the equations is available. However, 

an inner iteration is also needed, at each time step, to cope with the nonlinear 

terms. The following solution procedure is followed. 

1. At time t = 0, for the initial step of the inner iteration we approximate A 
* * 0 

and B by A and B calculated from d only and obtain a first approximation to 
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d1 from (7). We then iterate, using (7) with matrices A and B calculated from 
0 1 1 

d=.5(d + d ), for up to 10 times to refine the approximation to d . 
2. At all other time steps we use for matrices A and B, at the first step of the 

inner iteration, A* and B* derived from d*= dn + .5(dn - dn") to obtain a first 
n+l 

approximation to d by solving (7). We then iterate, using (7) with matrices A 

and B calculated from d = .5(dn + dn+l), two or three times to refine the 
n+l 

approximation to d . 

STABILITY ANALYSIS 

An investigation into the stability of the numerical scheme (6) is based on 

the von Neumann theory in which the growth factor is typically of Fourier mode, 

defined as 

where, k is the mode number and h is the element size, is determined for a 

hearisation of the numerical scheme. 

The nonlinear term UU, of Regularised Long Wave equation is linearised by 

making the quantity U locally constant which is equivalent to assuming that the 

n 
corresponding values of Sj are equal to a local constant d. Substituting the 

fourier mode (8) in equation (6) we obtain 

"n+l A n  

6 = g 6 where the growth factor g has the form 

where : a = (1 - R2)cos(2kh} + (P - R2)cos(kh) + 33 + 3R2, 

b = -[~;sin(2kh) + 10~;sin(kh)], R; =(120d)R1= (120d)(5At) 
2h * 

Taking the moduius of Eq.(9) gives I g 1 < 1; therefore the linearised scheme is 

unconditionally stable. 
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THE INITIAL STATE 

From the initial condition U(x,O) on the function U(x,t) we must determine the 
0 

initial vector d so that the time evolution of d, using (7), can be started. 

Firstly rewrite Eq.(2) for the initial condition as 

0 
where 6j are unknown parameters to be determined. To do this we require UN(x,O) 

to satisfy the following constraints: 

(a) It must agree with the initial condition U(x,O) at the knots xj, 

j=O,l, ...,N. 

(b) The first and the second derivatives of the approximate initial condition 

agree with those of the exact initial condition at both ends of the range; 

Eq.(3) produces two further equations. 
0 

The initial vector d is then determined as the solution of a matrix equation 

derived Erom Eq.(3) 
0 M d  = b  

THE TEST PROBLEMS 

We will now validate our algorithm by studying the motion of solitary waves . 

It is well known that Eq.(l) has a two parameter analytic solution of the form 

(Gardner) 
2 

U(x,t) = b + 3c sech (k[x-xo-(b+c)t]) 

where k = i j - ~ .  2 v(b+c) and b and c are constants. 

This solution with b = I is physically valid and corresponds to hlat used by 

Eilbeck and McGuire and Samtarelli and applies to a single solitary wave of 

magnitude 3c, initially centered on xo, propagating to the right without change 
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of shape at a steady velocity (l+c). 

Olver has shown that the RLW equation possesses only three polynomial 

invariants. We will examine the conservation properties of the algorithm by 

calculating these invariants, which for the RLW equation in the form (1) are: 

b b b 

C, = Udx, C2 = (U + VU )dx and C3 = SU3dx. I S 2 :  
a a a 

We now discuss the following cases: 

(a) We consider the motion of a single solitary wave and take the initial 

condition 

U(x,O) = 1+3c s e c h L ( ~ x + ~ )  

with c = 0.3, v = 1.0, A and D = -40A. The range 0 5 x 5 80 is 

divided into 400 elements of equal length h=0.2 and a time step At=O.l used. We 

observe the solitary wave moving to the right unchanged in form and with a 

velocity c = 1.3. 

Table (2) : Single soliton h = 0.2, At = 0.1, 0 s x 5 80, v = 1.0 

c 011 ocation 
Quintic 

r 

Time Galerkin wi th  

cubic spl i ne(Gardner) 
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From Table 2 we notice that L2 norm calculated by our scheme is more accurate 

than that obtained by Gardner 

Table (3) : Invariants for single soliton 

Table 3 shows us that in our scheme the change in the values of the quantities 

C1, C2 and C3 during the computer run are satisfactorily constant, each changes 

less than 2x10-~, but in the Galerkin method (Gardner) the changes in these 

quantities are less than 5x10-~ at h = 0.2 and At = 0.1. 

Time 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

(b) We have examined the evolution of an initial Maxwellian pulse into solitary 

waves, using as initial condition 
2 

U(x,O) = 1 + exp(-(x-7) ) 

For v = 0.04 the Maxwellian develops into a single solitary wave with magnitude 

and velocity consistent with equation (12), plus a well developed oscillating 

tail. This results bears a strong resemblance to the corresponding KDV 

simulation. The values of the quantities C1, C2 and C3 are given in Table 4 

Gardner Our scheme 

Cl 

Gardner Our scheme 

c 2  

Gardner Our scheme 

c3 

99.8919 
99.8919 
99.8919 
99.8919 
99.8920 
99.8919 
99.8920 
99.8920 
99.8920 
99.8920 

119.2089 
119.2091 
119.2095 
119.2100 
119.2104 
119.2110 
119.2114 
119.2118 
119.2125 
119.2130 

87.4941 
87.4942 
87.4944 
87.4945 
87.4947 
87.4949 
87.4951 
87.4953 
87.4955 
87.4957 

119,4085 
119.4085 
119,4086 
119.4086 
119.4086 
119.4086 
119.4087 
119.4087 
119.4087 
119.4087 

I 
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From Table 4 we find that the changes in C1, C2 and C3 were by a factor of 

0.9x10", 1.0x10-~ and 0.2x10-~ respectively in the Grlerkin method [lo], but 

the changes in our scheme by a factor less than 1.0x10-~. 1.0x10-~ . 5 .0~10 '~  

respectively. 

When v = 0.01 the final state is composed of 2 solitary waves each of which has 

magnitude and velocity consistent with equation (12) breakup into solitary waves 

Table (4) : v = 0.04 

is not clean however as a small disturbance. 

Table ( 5 )  : v = 0.01 

Our scheme Gardner Our schem' I c3 

Time 

2.0 
4.0 
6.0 
8.0 
- 

From Table 5 we show that the invariants CI, C2 and C3 are changes by 1.0x10-~, 

1 .OX and 1 .OX 10-I respectively in Galerkin method (Gardner), but these 

Gardner Our scheme 

c3 

40.1019 
40.1029 
40.1037 
40.1039 

Gardner Our scheme 

c 1 

40.3024 
40.3029 
40.3029 
40.3029 

31.7730 
31.7733 
31.7737 
31.7739 

Gardner Our scheme 

c2 

31.9724 
31.9724 
31.9724 
31.9724 

34.8492 
34.8501 
34.8507 
34.8509 

35.0483 
35.0483 
35.0483 
35.0482 
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quantities have been changed during the computer run by 1.0x10-', 5.0x10-~, and 

2.0x10-~ respectively in the present method. 

From Table 6 the invariants CI. C2, md C3 are changes by 1 . 0 ~ 1 0 ~ ,  8.0n10-~, 

and 1.0x10-' respectively in Galerkin method (Gardner), but these quantities 

have been changed during the computer run by 2.0nl0-~, 5 .0~10-~ ,  and 3.0x1d2 

respectively in the our scheme. 

CONCLUSION 

We have shown that the finite element method used in this paper can 

faithfully represent the amplitude, position and velocity of a single solitary 

wave. The L2-Norm calculated by our scheme is very small compared with that 

calculated by the Galerkin method [lo]. The three that invariants of motion are 

satisfactorily constants in all the computer simulations described here, so that 

the algorithm can fairly describe the invariant quantities as consewative. The 

numerical scheme has been shown to be unconditionally stable. We have further 

shown that the algorithm copes well with the generation of solitary waves from 

an arbitrary initial pulse, and conclude that it may widely be used for runs of 

Table (6): v = 0.001 

Gardner Our scheme Gardner Our scheme 
c2 c3 

Time Gardner Our scheme 
Cl 
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the RLW equation for long duration. 

We have demonstrated that using quintic splines is easy to apply as element 

shape and weight functions. We believe that this approach will be useful also 

for other applications where the continuity of derivatives is essential. 
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