

Control Systems Enginerring

Course: Digital Design (1)

Code : CSE3114 : 3 hours Time Date : 14/1/2014

Question (1)

(a) Write the missing numbers

i.
$$(257)_8 = (...)_2 = (...)_{16} = (...)_{10}$$

ii.
$$(732)_{10} = (...)_5 = (...)_7 = (...)_9$$

iii.
$$(A63)_{16} = (...)_{10} = (...)_8 = (...)_3$$

i. List the digits from $(650)_7$ to $(1100)_7$

ii. List the digits from (110)₃ to (1100)₃

iii. Write the first 20 decimal digits in base 6

c) Subtract the following numbers using r's complement

[20 marks]

Question (2)

(a) implement the following function:

$$F(X, Y, Z) = \Sigma(1, 3, 6, 7)$$
 using

I- NAND gates ONLY.

IV-NOR gates ONLY.

II- Multiplexer (8*1)

V- Multiplexer (4*1)

III-Decoder (3*8) + OR gate

(b) compare between full adder and full subtractor

[20 marks]

Question 3

a) Prove that full adder can be implemented by using two half adder and OR gate

b) Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of input number.

c) Design a BCD-to-excess-5 code converter, by using

1- Logic gates

2-MSI

d) Design a combinational circuit that has two inputs numbers each one with two bits. The output is determine by the following table

First number	Output
00	Second number + 3
01	Second number * 2
10	Second number * second number
11	Zero

- Obtain the truth table
- Find the simplified output function in sum of products.
- Find the simplified output function in product of sums.
- Implement the circuit by NAND gates ONLY.
- Implement the circuit by NOR gates ONLY.

[30 marks]

Question 4

- a) Design a three-bit magnitude comparator
- b) Design a five-bit binary adder
- c) Design 8*1 multiplexer
- d) Design 8*3 Encoder
- e) Design 3*8 Decoder

[30 marks]

With all best wishes

Dr. Sabry F. Saraya