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ABSTRACT

The problem of subsynchronous resonance (SSR), which is
not simple for an interconnected multi-machine power system,
is studied in this paper. The analytical approach that has
been used for such a study is described in detail, and
numerical examples are given.

P mathematical approach has been derived which
calculates the electrical natural freguencies in an inter-
connected power systems. It shows the effects of various
degrees of series compensation that are possible, together
with the effects of alternative system parameters.

This is necessary to determine the possibility of
system natural interaction with torgue resonance. Series
compensation can be considered at any level or omitted
altogether.

INTRODUCTION

The stability limit and hence the operational
capability of long transmission lines are greatly improved
by the use of series capacitor compensation, but unfortunate
experiences of S8SSR with generator shaft torques have
demonstrated the need for caution in the use of such series
compensation [1,2,3,4). Resonance can occur between the
natural freguencies of oscillation inherent in the rotating
masses of synchronous generators and prime movers coupled by
shafts which are themselves elastic, and the natural
freguencies of the electric system to which the generator is
connected.

Sudden change of torque to the main turbine-generator
coupling, produced by a transient variation of electric
power, can excite torsional natural resonant frequencies.
When series capacitors are used to compensate the reactance
of the transmission system the torsional natural resonant
oscillations in the turbine-generator shafts may be excited
by the power system natural freguency. Self-sustaining
torsional oscillations can shorten shaft life.

Previously studies have been made of the effects of
long transmission line systems connecting generation at a
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remote point to the main power system [5,6]. It is necessary
to calculate the electrical natural frequencies (ENF) to be
able to locate the zone of torsional interaction which is

around the points of peak of resonance (the points of
coincidence of ENF'S with mechanical natural fregquencies)
(7). The present work seeks to extend this to interconnected
multi-machine systems with more than one set of series com-
pensation, for this problem may be expected to be of greater

importance as power systems continue to grow.

The mathematical approach has been developed as a
general analysis of a c¢losed ring or coupled rings of
transmission lines connecting generators and loads, as it 1s
clear that any power system, no matter how complex, can be
reduced to a set of such rings, Each set can be studied :n
terms of the degree of series compensation, to evaluate the
ENF and then to identify the zone of torsional interaction,
The influence of different system parameters has been
investigated, together with the effects of network topology.

THE MECHANICAL SYSTEM

The mechanical system of each prime mover and generator
can be expressed for this purpose as a spring-mass model
whose parameters are known. The matrices expressing the
dynamic equation of motion include both the inertia matrix
and the velocity damping matrix, and when coupled by the
stiffness matrix to the applied torgue vector permit the
derivation of eigenvalues representing the mechanical modes
of natural oscillations as well as the derivation of the
eigenvectors of the mode shape. Appendix (I} describes the
derivation of the model used and gquotes typical values of
data to indicate the use of the model.

THE ELECTRICAL NETWORK

The generalised form of a ring which can be part or the
whole of the power system is shown in fig.(l-a). The
possibility of series compensation in every interconnecting
transmission line is considered but of course such compen-
sation can be set at zero for as many lines as desired or at
any regquired value whose resonance effect is to be
determined

The ENF'S are calculated by the following steps:
i} calculation of the single-phase equivalent circuit as
shown in fig.(1l-b},

ii) calculation of the inductance matrix L, which is dgiven
by
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where, L, . is the summation of inductances which are
*1 included in the loop i
Ljj is the inductance of the mutual link between

loops 1 & j .
11i) calculation of the capacitance matrix C, assuming

1/¢. =S, L.. FRAES GO Uil T LS 1 " R S o ¢
where, . o
ci = the capacitance inserted in loop i
Si = degree of compensation for that loop
L, = the inductance between the two directly linked

1) buses i & j .
Then, the capacitive reactance matrix F for fig.(l-b) is:

1/c, 1/¢, 1

1/c2 O T

l/c l/¢e
O il : :

; n
1/¢c l/c 1/e, = + - E0) /G
- 1 2 i "' i

and, the capacitance matrix isg

-1 .
C = F = "
iv) the electrical natural freguencies ENF'S , of a network
are those that arise from its .configuration, without applied
e.m.f'S [8). They can be fournd as the square roots of the
reciprocal of the eigenvalyes;of the P matrix where,

P=1LZC

and those values are yié&ed from the stator side.
Alternatively, they can be viewed from the rotor side, where

f =f =+ £

r n s :
if f£. is the rotor freq., f, 1is the natural freq., fg is
the synchronous freg., +ive sign for supersynchronous freq.,
and -ive sign for subsynchronous frequency.

The steps (i —— 1iv) can be applied for two or more
coupled rings as shown in fig.(2- a&b) . In the two cases,
the matrices are seen to have interesting properties. A
"base" matrix "B" can be derived, which is fixed and
constant for all degrees of compensation, as long as these
are constant throughout the network. If different degrees
are used only the diagonal elements of this base matrix are
affected. It verifies the relation

c = P l=-x3s

where, k is a scaler positive value, and equal to C, - The
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matrix B for the first case, fig.(l), is given hy

b11 1 1 . .. 1 o =]
; b22 ) IR . r . . -1 ;
_ |
i -1 -1 -1 -1 bnn
and,
b =(c +Xk)/k, i=1,2, .cu.. .., n-1
11
bnn=l
b = b = -1 ' i=1,2, ..... eey D=1
niL in
by = 1 , 163 =1 , 2, wevveue., n-1

With increase of the coupling between the different buses in
the network as shown in the second case, fig.(2), a slight
difference has been noticed for constructing the base matrix
B which is given by

By Pygy -1 -1 B | By n-1 | 1
by bog _‘_l____:l__._“"'—_l,___ by poy | 1
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Here, for every internal set, e.g. the set of loops 1,2,n-1
and the set of loops 3,4,n~2 , .... ext. as shown in fig.
(2-b), the matrix elements which relate the loops of each
set are constructed by the same relations of the matrix B
in the first case, where

bii = (ci + k) / k = on-diagonal element,

but the off-diagonal elements b, , & Db for the first
ij n-1,n-1
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or b, , , for the second set are equal to
-4, nN-24 ”

(Tenly b ke i k or SI-ATPL k 13/ <k
?WﬁﬂnfCTiVny, instead of the unity'ba ue in the first case
and with the same sign.

The matrix elements which
hetween the loop no. n and all
with it,{e.g. loop no. n-1, n-2,
structed exactly as in the first
difference, Therefore, the matrix B can be partitioned
into different parts, each part representing a set of
coupled loops with the same configuration as in the first
simple case. The off-diagonal elements between these parts
are equal to -1 , except those in the last row and column
are egual to 1 For clarity, this 1is illustrated
numerically in example 2 below.

The base matrix is multiplied by a positive scaler
factor to identify the effect of various degrees of
compensation. Thus the transmission lines can be considered
as compensated with the same degree or different degrees of
compensation without complication, one such degree being
zero if required. Omission of compensation decreases the
number of eigenvalues and the number of natural frequencies.

set

represent
loops which

the coupling
are directly
....ext.) are con-
case wilithout any

coupled

The following numerical examples are given to
demonstrate the above two cases (one ring & two coupled
rings).

EXAMPLE 1
For the studied system shown in fig.(3-a&b) (9], the
inductance matrix is -
0.459 0.101 0.000 0.000 0.000 0.085
0.101 0.543 0.350 0.000 0.000 0.092
0.000 0.350 0.760 0.240 0.000 0.170
L = 0.000 0.000 0.240 0.660 0,322 0.101
0.000 0.000 0.000 0.322 0.576 0.072
.10, 085 0.092 0.170 0.101 0.072 0.681 |
and the base matrix B when 55 is equal for all links is :
2.89 1 1 1 1 -1
1 2.75 1 1 1 -1
1 1 1.95 1 1 -1
Bf= I 1 1 2.6 1 -1
i 1 1 1 3.24 -1
| =1 -1 -1 -1 -1 1]
where, the scaler factor k wvaries with equal § as
S% _k S% k
10 62.11 50 12.42
20 31.06 60 10.36
30 20.70 70 8.87
40 15.46 80 7.76

Accordingly, the electrical natural frequencies can be
calculated at each case by calculating the square roots of
the reciprocal of the eigenvalues of the matrix
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P = LC=%k LB

and the frequency map 1s as seen in fig.(4), which
identifies the cross-over points where the network natural
frequencies coincide with those of the mechanical system. Of
course, the horizontal lines representing the mechanical
modes of oscillation will be moved upwards or downwards for
other different turbines shafts 1in the system, giving
different intersection-points, with different values of
inertia constants and shaft stiffness as shown in Fig.(5).

The inductance matrix changes with load, taking account
of the range of expected loads, has been studied as shown in
fig.(6). It is seen that, for a fixed compensation, the
natural frequencies viewed from the rotor side for the loops
(which include the loads reactances) are increased with inc-
reasing the load, while for the other loops, the freguencies
are constant.

In case of using Sy = 15 % , 52 = 20 % , S84 = 30 %
84 = 15 % ’ 55 = 25 % I 56 = 40 %
the base matrix B 1is given by _
F2.58 1 1 1 1 -1
1 4.5 1 1 1 -1
1 1 2.26 1 1 -1
B = 1 1 1 5.26 1 -1
1 1 1 1 4.58 -1
e -1 -1 -1 -1 1

and k = 15.53 , where both of the diagonal_elements of 'B"
and the value of k are dependent on the different
combinations of different S'f

EXAMPLE 2

Taking into consideration the same studied system in
example 1, with adding a line between buses 5 & 9 with an
inductance equal to 0.18 p.u., the equivalent L-C circuit is
shown in £ig.(7) to study the effect of alternative line
configurations (network topology). It has been seen that_

[ 0.460 0.101 0.000 0.000 0.000 0.085 0.000
0.10Y 0.%43 0.350 ©¢.000 0.000 0.092 0.000
0.000 0.350 0.760 0.240 0.000 0.170 0.000
L = 0.000 0,000 0.240 0.663 0.322 0.000 0.101

0.000 0.000 0.000 0.322 0.576 0.000 0.072
0.085 0.0%92 0.170 0.000 0.000 (.527 0.180
0.000 0.000 0,000 0.101 0.072 0.180 0.514

and C=F~-1 = x B , where %k 1is at the same values as

in example 1 & :
3.79 1.89 1.89 -1 -1 1-1.89) 1
1.89 3,65 1.89 -1 -1 ]—1.89; 1
1.89 1.89 2.84 | -1 =1 =1.89 1 |

B = | -1 -1 -1 ' 2.59 1 1 -1
-1 -1 -1 ! 1 3.24 1 -1
-1.89 -1.89 -1.89 | 1 1 [[1.89) -1
1 1 1 i -1 -1 -1 1 5
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The natural frequencies cen then be calculated. It has
been found that the natural frequencies for the loops which
are at the same condition of coupling in the first case are
not changed. However, the natural frequencies for the loops
which are more coupled are changed and become higher when
they. are viewed from the rotor side.

Thus, improved coupling has the same effect upon the
natural frequencies as does increased the loads. :

From the above numerical studies, the frequency map at
50 % loading as shown in fig.(6-b), can be redrawn with
changing either the inertia or shaft constants to move the
mechanical modes upward or downward in order to determine
the shortest possible range of series compensation at which
the occurence of torsicnal interaction is possible, e.g. by
choosing the shaft stiffness values as shown in fig.(5-b-i),
the frequency map at lcad = 50 % is shown in fig.(8), where
the range of series compensation corresponding to the zone
of torsional interaction is as short as possible,

CONCLUSIONS

Most published studies of SSR problems in power systems
have been considered with a system configuration where
remote generation has been coupled through long transmission
lines to a system large enough to be considered as an
infinite system,

Such simplification is not always possible and it is
expected that circumstances will arise where more extensive
use will be made of series compensation within that
"infinite" system.

A method has been defined for the consideration of this
much more difficult problem. It leads to the identification
of the maximum permissible compensation in a given trans-
mission line or lines within a power system. It also
includes consideration of the load effect. Inertia and shaft
stiffness effects are also included. The results are given
in graphical form with practicable numerical illustrations.

It is interesting to note that increasing loads have a
similar effect to improving coupling in increasing the
natural freguencies.

This paper shows that a full design study is necessary
when series compensation is under consideration, and
indicates a practicable method for such a study.

APPENDIX (1I)

Natural Frequencies and Mode Shapes of the Turbine-
Shafts :

The system is assumed to be represented by the spring-mass
model shown in fig.(9), and assumes an unforced and undamped
mechanical system., The data of the turbine shaft studied are
froma real example [10]) and the values of the stiffness are

k12 = 29.437 , k23 62.241 , k34 = 73,9086 , k45 = 5.306
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Stage inertia constants :

HP stage = 0.0649 sec.
Ip : = 0.2552 "
LP " = 1.5390 "
Generator rotor = 0.98 h
Exciter rotor = 0.0298 sec.
(all values are in p.u. except t in sec. & 6 in rad.

Applying the eigenvalue conventional method [7] , the
mechanical natural freguencies are :
fm1 = 20 , fm2 =.27 . fm3 = 30 , fm4 = 45 c.p.s.

and the mode shapes are shown in fig.(10),.
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