### FOLIAR APPLICATION OF ORGANIC ACIDS AND ANTIOXIDANTS IMPACT ON FRUIT YIELD AND QUALITY OF FIG AND OLIVE TREES IN SOME VALLEYS OF NORTHWESTERN COAST OF EGYPT

### H. A. Fawy

Soil Fertility and Microbiology Dept., Desert Research Center (DRC), Cairo

#### (Received: Sep. 2, 2015)

**ABSTRACT:** Two field experiments carried out in two farms, located in the north western coast soils of Egypt. The first farm was olive trees in Sanab valley, while the other farm was fig trees in Hashem valley, which selected for its higher increase the homogeneity or symmetry between trees. The texture farm soils was sandy loam, the main source of irrigation water for the fig and olive trees is seasonal rain water. Some additions of irrigation water are depended on the quantity of store water in valley wells, the area of olive tree 8 years old was 100m<sup>2</sup> (100 trees/ha) while the fig tree 10 years old was 156m<sup>2</sup> (64 trees/ha). The aim of this research is to study the effect the foliar application of amino and humic acids and antioxidants on fruits of fig and olive trees under water drought conditions in North-Western Coast soils.

Foliar application of amino acid (Am), humic acids and antioxidants as ascorbic acid (As) with mineral fertilization were applied. The yield components, total antioxidants, total phenols, total sugar %, oil content % and nutrients concentrations of fig and olive trees were increased with increasing rates of amino acid, humic acids and antioxidants. The beneficial effect of added treatments on yield components of fig and olive trees were arranged as follows; ascorbic acid (As) > amino acids (Am) > humic acid > control. The most effective treatment was  $Am_2AS_3$  with  $humic_2$  (ascorbic acid at 600 ppm) with amino and humic acids (at 400 ppm), which achieved 41.2Mg ha<sup>-1</sup> of fig fruits (64 trees/ha) and 18.9 Mg ha<sup>-1</sup> of olive fruits (100 trees/ha).The foliar antioxidants recorded higher increases of yield parameters fruits of fig and olive trees than amino acids and humic acid, while the humic acid showed the lowest effect. The effect trilateral interactions between studied factors (ascorbic acid, amino acids and humic acid) were higher for yield component, nutrients content, total phenols, total antioxidants in leaves and fruits of fig and olive trees than the bilateral and individual interactions, while the individual interactions appeared the lowest effect.

Key words: Foliar amino and humic acids and antioxidants, fruits yield, fig and olive trees.

### INTRODUCTION

The irrigation water source for fig and olive trees in the North-Western Coast was the rains water which is starting from October or November until February and March every year. In some areas, possible use supplementary irrigation water system from wells water after the rainy season is ended. Therefore, these soils need for supplemental irrigation to complete plant growth and production.

Humic molecules increased leaf water retention and the photosynthetic and antioxidant metabolism under water stress. The humic substances increased the roots density and absorbed nutrients across the plasma membranes of roots. The humic acid increased morphological criteria (plant height, leaves number, fresh and dry metabolism weights of shoots), (photosynthetic pigment, total soluble sugar, total carbohydrates, total amino acids and proline), mineral contents (N, P, K, Ca and Mg) and yield (grain, straw and biology) of plants, Under salt stress, the foliar application of humic substances increased the uptake of nutrients by corn plant, the previous facts according to Fahramand et al. (2014), Canellas and Olivares (2014), El-Bassiouny et al. (2014) and Khaled and Fawy (2011), respectively.

Amino acids functions in plant such as protein synthesis, stress resistance, effect of photosynthesis, action on the stomas, chelating effect, activators of phytohormones, pollination with fruit formation and equilibrium of soil flora, above findings according to Ortiz-Lopez *et al.* (2000), Abd El-Samad *et al.* (2010) and Gioseffi *et al.* (2012).

Antioxidants defense machinery protects plants against oxidative stress damages by scavenging of reactive oxygen species (ROS). Antioxidant machinery, such as antioxidant enzymes, ascorbic acid. carotenoids and flavonoids, the antioxidant enzyme activity protect plant cells from light, temperature and drought stress. Antioxidant as flavonoids contribute greatly to ROSdetoxification through chemical reactive for oxygen species (ROS) in plant and human cells, flavonoids have the greatly potential to effect on mitogen-activated protein kinases (MAPK) process to form protein in plants, the previous findings according to Hamid et al. (2010), Gill and Tuteja (2010), Agatia et al. (2012), and Brunetti et al. (2013).

Effect of foliar organic acid and antioxidants applied on yield parameters and nutrients contents of fig an olive trees ; Yousef et al. (2011) reported that spray 0.5% of (Humic acid +amino acids + potassium dihydrogen phosphate + chelated form of Zn, Mn and Fe) was most effective for growth and yield components of olive trees. Hagagg et al. (2010) stated that yield components of olive trees improved by humic acid application. Yousef et al. (2011) reported that foliar spray amino acids at 0.5% alone or in combination with mixture of micro elements (Zn + Mn + Fe) at 0.25 was most effective for yield components of olive trees (Yousef et al., 2011). Hagagg et al. (2013) stated that foliar 75 ml\tree of humic acid 20% and 50 ml\tree of amino acid 20% at full bloom stage and after one month from full bloom stage achieved highest yield components and oil content of fruits olive trees. Shalaby and El-Ramady (2014) reported that foliar amino acids at (1.2 ml/L), yeast (2 g/L) and ascorbic acid (0.2 g/L) increased yield components of garlic plant. Mujić et al. (2012) stated that total phenols

content in fruit figs extract by 70% methanol ranged from 7.24 to 11.17 mg CAE/g of dry extract. Maksoud et al. (2009) reported that the foliar ascorbic acid or citric acid at 2000 ppm alone or with bio-fertilizer improved yield, fruit quality, oil and antioxidants contents in olive trees. Sulaiman and Hassan (2011) reported that the total sugar in fig fruits ranged from 20 to 31 g/100gFW, while the nutrients content in fruits were 572, 222, 152, 5.3, 0.38, 8.6, 44.7 and 7.5 mg/100g FW for K, Ca, P, Fe, Cu, Zn, Mg and Na respectively. EI-Sayed et al. (2014) stated that ascorbic acid applied at 3000 ppm to olive trees improved yield parameters when comparison with rate(2000 ppm), on the other side, Azad et al. (2014) reported that foliar ascorbic acid at 500ppm with 60mg/L of humic acid were most efficient treatment to achieve highest yield components of olive trees.

Concerning the effect of mineral fertilizers on fruit olive and fig trees production, Mimoun et al. (2004) reported that foliar K for olive trees increased fruit weight, pit ratio, polyphenol and others mineral elements. Barranco et al. (2010) stated that the foliar mono-potassium phosphate (MKP) 3% plus urea was the most effective treatment for yield and oil content of fruits of olive. Hagagg et al. (2012) stated that the foliar 50g of (20N/20P<sub>2</sub>O<sub>5</sub>/20K<sub>2</sub>O) at form (37.5 g in soil + 12.5 g foliar application) improved height increment, leaves number, enhanced leaf dry weight and root length, while highest number and weight of olive fruits achieved with (12.5g in soil + 37.5g as foliar application). Malek and Sanaa (2013) reported that the yield components of olive fruits increased with increasing rates of NPK fertilizer. Aydin et al. (2001) reported that foliar Zn (0.15%) in three times gave maximum yield components of fig fruits. Jagtap et al. (2012) stated that the foliar FeSO<sub>4</sub>, ZnSO<sub>4</sub> and boric acid increased parameters fia vield of fruits and micronutrients contents of fig trees. Abbasi et al. (2012) stated that the macro (20 N, 10 P and 20% K) and micro (157B, 225 Fe, 112Zn, 120Mn, 52Cu, 7Mo and 6 Co mg/L) combination with emulsifier achieved highest yield parameters of olive fruits. Ercisli *et al.* (2012) reported that the total phenols ranged from 24 to 237 mg of gallic acid equivalent per 100 g fresh weight, while the total antioxidant ranged 4.6 to 18.7 mmol  $Fe_2/kg$  FW of fig fruits. Tekaya *et al.* (2013) reported that the foliar macro-micronutrients improved yield parameters of olive trees, nutrients uptake and oil stability and increased with increasing the content of antioxidants.

The objective of this research were to determine the influence of foliar application macro and micronutrients with amino, humic and ascorbic acids on fruits yield and quality, nutrients content, total antioxidants, total phenols, total sugar %, and oil content % of fig and olive trees. Determine the ability of the tested trees to resistance the salinity and drought conditions of the North West Coast soils - Matrouh Governorate of the North West Coast soils - Matrouh Governorate.

### MATERIALS AND METHODS

Two experiments carried out in two farms, the olive farm was in Sanab Valley located at 31º 2.84' 21" N and 27º 58.03' 05' E, while fig trees farm was the second in Hashem valley located at 31º 44.19' 08" N and 27º 10.32' 38" E, which selected for the higher homogeneity or symmetry between trees. The texture farm soils was sandy loam, the main source of irrigation water for the fig and olives trees is the seasonal rain water. Some additions of irrigation water were depended on the valley contain from the water stored in wells. The area of olive tree (8 years old) was 100m<sup>2</sup> (10x10),100 trees/ha while area of the fig tree 10 years old was 156 m<sup>2</sup> (12x13), 64 trees/ha. The foliar applied of ascorbic, amino and humic acids on fruits of figs and olives under water drought conditions in north-western coast soils were investigated. Analytical data of the studied soils are presented in Table (1). Analyses were accomplished according to Page et al. (1984) and Klute (1986).

The rainy season starts in November and remains in December, January and part of February. AL mostly at the rainy season, a plenty of soil nutrients content would be dissolved in the rain water, consequently, it will be taken up by tested trees, particularly available nitrogen. Those trees store these nutrients in their branches. Where in this time, trees not start to make new shoots under conditions of cold weather, especially in the month of December and January, when the temperature start to increase and the weather begins to warm, the buds release to form new leaves and begin the vegetative growth stage.

The requirements of nutrients for fig trees during the stages growth were different about the olive trees requirements. Foliar applied amount of mineral fertilizers to the fig and olive farms were applied at one rate (control) through the two seasons is described at Table (2). The foliar mineral fertilizers, amino acids 20% (2.9% Fe, 1.4% Zn and 0.7% Mn), K-humate (86% humic acid and 12% K<sub>2</sub>O) and ascorbic acid (100%) application regime as following; during March and April, the vegetative growth stage and the formation of the new leaves, the foliar A was adding. After the end of the flowering stage and the beginning of the fruit composition stage during the month of May and July, the foliar B was added. During the June and August the foliar C was added. The foliar rates of humic acid were 200 and 400 ppm equal 4.66 and 9.32 g of K-humate/20L, respectively, while the amino acids rates were 200 and 400 ppm equal 20 and 40 ml of amino acids/20L, respectively. The antioxidants (ascorbic acid) were 200, 400 and 600 ppm equal 4, 8 and 12 g of ascorbic acid (100%)/20L, respectively.

The harvest stage of olive trees is in the September and October months, while the harvest stage of figs trees is two crops yield, the first crop at the end of June month and the second crop in the September month. Plant samples were collected at harvesting stage in the end of each experiment. The number branches/tree, number fruits/branch, number fruits/tree, weight one fruit(gm), weight fruits (kg/tree) and weight fruits (ton/tree) of the figs and olives trees recorded during the studied two seasons. Plant samples were analyzed for N, P and K according to Cottenie *et al.* (1982). The

### Fawy

official Lane-Eynon method described in AOAC was used to measure the total sugar (TS %) in fruit (James, 2004 and Horowitz, 2000), while the oil was extracted from the olive fruits samples using chloroform: methanol mixture (2:1, V/V) and SOXHLET

extraction method according to Kates (1972) and Petrakis (2006). Measurements of total antioxidants and total phenolic acids in both soils and plants were done according to Rimmer (2009).

|         |           | paste<br>ract | OI                 | N               | CaCC              | )3                | Pa         | rticle                             | siz              | e dist | ribu | tes              |           | CEC<br>nol <sub>c</sub> kg <sup>-</sup> | Texture    |
|---------|-----------|---------------|--------------------|-----------------|-------------------|-------------------|------------|------------------------------------|------------------|--------|------|------------------|-----------|-----------------------------------------|------------|
| Depth   |           | EC            |                    |                 |                   |                   | Sai        | nd                                 | 5                | Silt   | C    | lay              |           | 1                                       |            |
| Ċm      | рН        | dS/m          | %                  | )               |                   |                   |            |                                    | 1                |        |      | -                |           |                                         |            |
|         |           |               |                    | Sa              | anab Va           | alley             | (Oli       | ve fa                              | rm)              | I      |      |                  |           |                                         |            |
| 0-30    | 7.71      | 1.80          | 1.1                | 4               | 15.34             | 4                 | 64.        | 11                                 | 21.18            |        | 14   | 4.71             |           | 15.35                                   | S.L        |
| 30 -60  | 8.03      | 1.88          | 0.5                | 6               | 15.97             | 7                 | 62.0       | 64                                 | 20               | ).21   | 1    | 7.15             |           | 16.22                                   | S.L        |
|         |           |               |                    | Ha              | ashem '           | Vall              | ey (F      | ig fa                              | rm)              |        | •    |                  |           |                                         |            |
| 0-30    | 8.16      | 1.70          | 1.2                | 25              | 16.4 <sup>-</sup> | 1                 | 61.0       | 61                                 | 21               | .73    | 10   | 6.66             |           | 16.71                                   | S.L        |
| 30 -60  | 8.44      | 1.79          | 0.6                | 8               | 18.0 <sup>-</sup> | 1                 | 57.8       | 87                                 | 22               | 2.18   | 19   | 9.95             |           | 18.58                                   | S.L        |
| Soluble | cations   | and anic      | ons in so          | oil (r          | nmol <sub>c</sub> | L <sup>-1</sup> ) | and        | Tota                               | l ant            | tioxid | ants | and              | phe       | enol acid                               | ls in soil |
|         |           |               |                    | Sa              | anab Va           | alley             | ' (Oli     | ve fa                              | ırm)             |        |      |                  |           |                                         |            |
|         | Na        | К             | C                  | a               | Mg                |                   | HCO        | <b>D</b> <sub>3</sub> <sup>-</sup> | (                | CI     | S    | 04 <sup>2-</sup> | T. phenol |                                         | T.A.A      |
| 0-30    | 7.53      | 0.25          | 5.8                | 80              | 4.50              |                   | 0.7        | 0                                  | 12.00            |        | 5    | 5.38             |           | 643                                     | 182        |
| 30-60   | 8.46      | 0.27          | 7 5.70             |                 | 4.80              |                   | 0.7        | 75 12.5                            |                  | 2.50   | 5    | .98              |           | 316                                     | 93         |
|         |           |               |                    | Ha              | ashem '           | Vall              | ey (F      | ig fa                              | ırm)             |        | -    |                  |           |                                         |            |
| 0-30    | 5.87      | 0.65          | 5.8                | 80              | 4.60              |                   | 0.6        | 60                                 | 11               | .50    | 4    | .82              |           | 705                                     | 199        |
| 30-60   | 6.10      | 0.70          | 6.0                | 0 5.00          |                   | )                 | 0.6        | 60                                 | 12               | 2.00   | 5    | .20              |           | 384                                     | 108        |
|         |           |               | Av                 | ailable nutrien |                   | ient              | s in s     | soil (                             | mg l             | kg⁻¹)  |      |                  |           |                                         |            |
|         | N         |               | Р                  | K F             |                   | Fe                | Fe         |                                    | Mn               |        | Zr   | 1                |           | В                                       | Cu         |
|         |           |               |                    | Sa              | anab Va           | alley             | lley (Oliv |                                    | ve farm)         |        |      |                  |           |                                         |            |
| 0-30    | 42.6      | 1.            | 72                 | 13              | 4                 | 11.8              |            | 8.12                               |                  | 12 5.  |      | 5.19             |           | 4.73                                    | 0.71       |
| 30-60   | 18.8      | 1.            | 38                 | 158 14          |                   | 14.               | 4.5 9      |                                    | 9.43             |        | 6.24 |                  |           | 5.11                                    | 0.87       |
|         | 1         |               |                    | Ha              | ashem '           | Vall              | ey (F      | <u> </u>                           |                  |        |      |                  |           |                                         |            |
| 0-30    | 48.2      |               | 86                 | 16              | 1                 | 13                | .5         | 9                                  | .14              |        | 6.1  | 6.18             |           | 5.65                                    | 0.82       |
| 30-60   | 23.7      | 1.            | 53                 | 18              | 2                 | 15.               | .7         | 1(                                 | 0.93             |        | 7.8  | 6                |           | 6.24                                    | 0.96       |
| N       | lutrients |               | tatus of leaves ar |                 | bioche            | emic              | al co      | onten                              | nts b            | efore  | app  | olied            | any       | <sup>,</sup> fertilize                  |            |
| Farms   | Ν         | Р             | К                  |                 | Fe                | M                 |            | Zr                                 |                  | В      |      | Сι               | 1         | T. ph.                                  | T.A.A      |
| 1 41113 |           | %             | [                  |                 |                   |                   |            | Mg k                               | (g <sup>-1</sup> |        |      |                  |           | µg ml⁻¹                                 |            |
| Olive   | 0.73      | 0.09          | 0.56               | 5               | 53.3              | 41                | .1         | 23.                                | 8                | 18.    |      | 1.5              |           | 544                                     | 271        |
| Fig     | 0.94      | 0.07          | 0.07 0.74          |                 |                   | 56                | .8         | 17.                                | 5                | 12.    | 4    | 1.8              | 5         | 361                                     | 181        |

S.L= Sandy Loam soil, T.ph = Total phenols (µmol of Gallic acid/ml extract),

T.A.A= Total antioxidants activity (µg of Ascorbic acid/ml extract).

| and                                                                                                              | and onve trees.                                                                                |                           |               |                |         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|---------------|----------------|---------|--|--|--|--|--|--|
| Foliar                                                                                                           |                                                                                                | Fig tree                  |               | Olive tree     |         |  |  |  |  |  |  |
| Treatments                                                                                                       | Ν                                                                                              | N P K N P K               |               |                |         |  |  |  |  |  |  |
| One rate of mineral fertilizer applied for all treatments at three sequence doses (mg kg <sup>-1</sup> ) at 600L |                                                                                                |                           |               |                |         |  |  |  |  |  |  |
| Foliar A                                                                                                         | 1017                                                                                           | 1017 290 799 846 435 625  |               |                |         |  |  |  |  |  |  |
| Foliar B                                                                                                         | 846                                                                                            | 846 377 972 675 580 799   |               |                |         |  |  |  |  |  |  |
| Foliar C                                                                                                         | 675                                                                                            | 675 435 1215 508 652 1007 |               |                |         |  |  |  |  |  |  |
|                                                                                                                  |                                                                                                | Micronutrie               | nts treatment | (mg kg⁻¹)      |         |  |  |  |  |  |  |
| Micro                                                                                                            | 300 ppm of I                                                                                   | Fe, Mn and Zn             | while 50 ppm  | of B (as Borio | c acid) |  |  |  |  |  |  |
|                                                                                                                  | Organic acid and antioxidant rates                                                             |                           |               |                |         |  |  |  |  |  |  |
| Humic acid                                                                                                       | 200 and 400 mg kg <sup>-1</sup> (4.66 and 9.32 g of K-humate 86%/20L respectively)             |                           |               |                |         |  |  |  |  |  |  |
| Amino acids                                                                                                      | Amino acids 200 and 400 mg kg <sup>-1</sup> (20 and 40 ml of amino acids 20%/20L respectively) |                           |               |                |         |  |  |  |  |  |  |
| Ascorbic acid 200, 400 and 600 mg kg <sup>-1</sup> (4, 8 and 12 g of ascorbic acid 100%/20L respectively)        |                                                                                                |                           |               |                |         |  |  |  |  |  |  |

Table (2). Treatments of amino, humic and ascorbic acids and mineral fertilizers for fig and olive trees.

## Soil and plant Phenolic Acids and Total antioxidant

Two grams of soil was extracted with 10 mL of deionized (DI) water and shaking for 16 h on a reciprocal shaker followed by centrifugation and collected the supernatant for purification. The soil pellet was then extracted with 10 mL of 50 mM EDTA (pH 7.5) for 16 h on a reciprocal shaker. After EDTA extraction, the samples were centrifuged and the supernatant saved for purification. Rimmer (2009).

## Antioxidant ability assays Total antioxidant activity

The extract (0.1 ml) was mixed with 3 ml of reagent solution (0.6 M sulphuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). The tubes were incubated at 95°C for 90 min. The mixture was cooled to room temperature, and then the absorbance of the solution was measured at 695 nm against blank. The total antioxidant activity was expressed as ascorbic acid equivalents in milligrams per gram of the extract (Prieto *et al.*, 1999).

## Measurement of total phenol compounds

Total phenolic constituents of plant extracts were performed employing the literature methods involving Folin-Ciocalteu reagent and gallic acid as standard (Slinkard and Singleton, 1977). Extract solution (0.1 ml) containing 1000 ug extract was taken in a volumetric flask, 46 ml distilled water and 1 ml Folin-Ciocalteu reagent were added and flask was shaken thoroughly. After 3 min, 3 ml of solution 2% Na<sub>2</sub>CO<sub>3</sub> was added and the mixture was allowed to stand for 2 h with intermittent shaking. Absorbance was measured at 760 nm. The same procedure was repeated to all standard gallic acid solutions (0-1000 mg, 0.1 ml-1) and standard curve was obtained. In two successive years with two field experiments, statistical analysis was carried out using spilt-split technique in randomize complete blocks design with three replications for each treatment. The obtained data were statistically analyzed according to Gomez and Gomez (1984).

### RESULTS AND DISCUSSION Effect of organic acids and antioxidants on fruits yield of fig and olive trees.

The nutrition status of fig and olive leaves grown in Hashem and Sanab valleys before applied any amendments and fertilization, besides the available nutrients in the two farms are present at (Table 1). Some of available nutrients were not sufficient for growth requirements of fig and olive trees. Therefore, a foliar application of mineral fertilization and some amendments to complete the plant growth and production especially when rain season end become necessary and it must be taken in the consideration.

The NPK and micronutrients fertilizers applied at one rate for all studied treatments (Table 2) which were suitable nutrients to approach the sufficient levels of nutrients for obtain a good growth and highest fruits production of fig and olive trees.

Data in Table (3) and Fig (1) showed that the yield components of fig and olive trees increased with increasing the applied rates of foliar humic, amino and ascorbic acids. In this respect, the antioxidant (ascorbic acid) treatment induced the higher yield of fig and olive fruits than the amino acid, while the humic acid occurred the lowest effect. Ascorbic acid treatment recorded increases over control treatment by 29.1, 20.2 and 25.6% for number branches, number fruits and weight fruits of figs trees respectively while the amino acids treatment achieved 21.5, 14.1 and 20.2%, and the humic acid 7.1, 5.7 and 15.3% in comparison with the control

The interactions between the amino acids and humic acid increased impact on the yield parameters of fig and olive fruits by increasing organic acids rates. The treatment (200mg/kg of amino acid + 400 mg/kg of humic acid) induced a higher increases of fruits yield than control treatment amino acid + 400 mg/kg of humic acid by 9.0, 3.4 and 5.7% for number of branches, number of fruits and weight of fruits/fig tree, respectively, while 400 mg/kg of amino acid achieved 11.9, 7.3 and 10.2% more than others. On the other side, the same trend occurred with olive trees, the treatment (400 mg/kg of amino acid + 400 mg/kg of humic acid) showed a higher increases for fruits yield than control treatment of amino acid with 400 mg/kg of humic acid by 4.6, 2.1 and 5.7% for number branches, number fruits and weight one fruit/figs tree, respectively.

The interactions between amino, humic and ascorbic acids achieved the highest increases for fruits yield components of fig and olive when compared with other studied treatments. The most affect treatment (Amino<sub>2</sub> Ascorbic<sub>3</sub> Humic<sub>2</sub>) achieved 41.2 Mgha<sup>-1</sup>(64 fig trees/ha) and 18.9 Mgha<sup>-1</sup> (100olive trees/ha). Under the superior treatment conditions  $(Am_2AS_3 Humic_2)$ , antioxidant recorded higher increases of fruits yield of fig trees above control 25.0, 15.4 and 20.5%, treatment about while the amino acids recorded about 18.1, 9.1 and 12.8%, and the humic acid insulted about 9.9, 2.8 and 12.8% for number branches, number fruits and weight fruits (gm) respectively. The same trend was observed on olive trees (Table 3).

The previous results indicate that the antioxidants were the most beneficial effective on the trees fruits production of fig and olive trees. Followed by amino acids and humic acid, this due to the antioxidants have an important role to increase the ability of olive and fig trees to resistance drought conditions and increase of proline levels in the plant, which increase the plant ability to continue the natural growth under conditions of Matarouh valleys, These facts has been reported by Fahramand et al. (2014), Canellas and Olivares (2014), El-Bassiouny et al. (2014) and Khaled and Fawy (2011). The importance of the role of humic and amino acids in the plant stated by Ortiz-Lopez et al. (2000), Abd El-Samad et al. (2010) and Gioseffi et al. (2012), while the plant's ability to tolerate drought stress conditions and role of antioxidants decided by Maksoud, et al.(2009), Hamid et al.(2010), Gill and Tuteja (2010), Agatia et al. (2012), and Brunetti et al. (2013). The above results agree with those obtained by Mujić et al. (2012), El-Sayed et al. (2014) and Azad et al. (2014).

| Treatments              |                         | No. Fruits | No. Fruits | W. one Fruit | W. Fruits | No. Fruits | No. Fruits                 | W. one Fruit | W. Fruits |  |  |  |
|-------------------------|-------------------------|------------|------------|--------------|-----------|------------|----------------------------|--------------|-----------|--|--|--|
|                         | Т<br>Т                  | /branch    | /tree      | (g)          | Mg/ha     | /branch    | /tree                      | (g)          | Mg/ha     |  |  |  |
|                         |                         |            | g trees (6 |              |           |            | Olive trees (100 trees/ha) |              |           |  |  |  |
|                         | Control                 | 75         | 4125       | 48.5         | 12.8      | 12.9       | 12690                      | 5.27         | 6.7       |  |  |  |
|                         | $Am_0AS_1$              | 77         | 4543       | 49.7         | 14.5      | 14.5       | 13328                      | 5.53         | 7.4       |  |  |  |
|                         | $Am_0AS_2$              | 83         | 5395       | 54.5         | 18.8      | 18.9       | 15686                      | 5.93         | 9.3       |  |  |  |
|                         | $Am_0AS_3$              | 87         | 6177       | 59.7         | 23.6      | 23.7       | 18023                      | 6.49         | 11.7      |  |  |  |
| id,                     | $Am_1AS_0$              | 78         | 4836       | 51.5         | 15.9      | 16.0       | 13737                      | 5.63         | 7.7       |  |  |  |
| Humic acid <sub>1</sub> | $Am_1AS_1$              | 81         | 5508       | 55.6         | 19.6      | 19.7       | 14945                      | 5.85         | 8.7       |  |  |  |
| ц<br>Ш                  | $Am_1AS_2$              | 85         | 6290       | 60.8         | 24.5      | 24.6       | 16770                      | 6.25         | 10.5      |  |  |  |
| ЪН                      | $Am_1AS_3$              | 89         | 6942       | 64.5         | 28.7      | 28.8       | 18837                      | 6.89         | 13.0      |  |  |  |
|                         | $Am_2AS_0$              | 80         | 5200       | 53.2         | 17.7      | 17.8       | 14337                      | 5.78         | 8.3       |  |  |  |
|                         | $Am_2AS_1$              | 85         | 5950       | 57.2         | 21.8      | 21.9       | 16064                      | 6.32         | 10.1      |  |  |  |
|                         | $Am_2AS_2$              | 89         | 6675       | 62.4         | 26.7      | 26.8       | 17884                      | 6.81         | 12.2      |  |  |  |
|                         | $Am_2AS_3$              | 93         | 7347       | 66.6         | 31.3      | 31.4       | 20294                      | 7.38         | 15.0      |  |  |  |
|                         | Control                 | 79         | 4819       | 56.4         | 17.4      | 17.5       | 14520                      | 6.57         | 9.5       |  |  |  |
|                         | $Am_0AS_1$              | 81         | 5265       | 61.1         | 20.6      | 20.7       | 15435                      | 6.34         | 9.8       |  |  |  |
|                         | $Am_0AS_2$              | 87         | 6177       | 66.7         | 26.4      | 26.5       | 18216                      | 6.86         | 12.5      |  |  |  |
|                         | $Am_0AS_3$              | 94         | 7238       | 69.8         | 32.3      | 32.5       | 20625                      | 7.39         | 15.2      |  |  |  |
| $d_2$                   | $Am_1AS_0$              | 83         | 5561       | 62.3         | 22.2      | 22.3       | 15808                      | 6.54         | 10.3      |  |  |  |
| aci                     | $Am_1AS_1$              | 85         | 6290       | 64.6         | 26.0      | 26.1       | 16566                      | 6.95         | 11.5      |  |  |  |
| Humic acid₂             | $Am_1AS_2$              | 89         | 6853       | 69.3         | 30.4      | 30.5       | 19368                      | 7.46         | 14.4      |  |  |  |
| ЪЧ                      | $Am_1AS_3$              | 96         | 7968       | 73.2         | 37.3      | 37.5       | 21918                      | 7.84         | 17.2      |  |  |  |
|                         | $Am_2AS_0$              | 85         | 5865       | 65.5         | 24.6      | 24.7       | 16683                      | 6.69         | 11.2      |  |  |  |
|                         | $Am_2AS_1$              | 89         | 6675       | 68.4         | 29.2      | 29.3       | 17990                      | 7.36         | 13.2      |  |  |  |
|                         | $Am_2AS_2$              | 95         | 7695       | 73.4         | 36.1      | 36.3       | 20748                      | 7.83         | 16.2      |  |  |  |
|                         | $Am_2AS_3$              | 99         | 8514       | 75.4         | 41.1      | 41.2       | 22880                      | 8.26         | 18.9      |  |  |  |
| LSD                     | <sub>0.05</sub> Humic   | 1.43       | 106        | 2.91         | 2.09      | 2.09       | 2.09                       | 0.29         | 0.95      |  |  |  |
| LSD                     | 0.05 Amino              | 0.32       | 50         | 0.34         | 0.38      | 0.38       | 0.38                       | 0.04         | 0.14      |  |  |  |
|                         | 0.05 Ascorbic           | 0.26       | 80         | 0.24         | 0.29      | 0.29       | 0.29                       | 0.03         | 0.12      |  |  |  |
|                         |                         | 0.31       | 70         | 0.49         | 0.55      | 0.55       | 0.55                       | 0.04         | 0.19      |  |  |  |
| LSD                     | <sub>0.05</sub> Hu x AS | 0.37       | 113        | 0.34         | 0.40      | 0.40       | 0.40                       | 0.04         | 0.17      |  |  |  |
| LSD                     | <sub>0.05</sub> Am x AS | 0.45       | 139        | 0.42         | 0.48      | 0.48       | 0.48                       | 0.05         | 1.13      |  |  |  |
| LSD                     | 0.05 3 factors          | 0.64       | 196        | 0.59         | 0.69      | 0.69       | 0.69                       | 0.06         | 1.64      |  |  |  |

| Table (3). | Effect | of foliar | amino,    | humic     | and as   | scorbic   | acids  | applied | on t | he yield |
|------------|--------|-----------|-----------|-----------|----------|-----------|--------|---------|------|----------|
|            | compo  | onents of | fig and o | live tree | s (avera | age of th | ne two | seasons | 5).  |          |
|            |        |           |           | Ļ         |          |           |        |         | Ļ    |          |

No =number, Am=amino acids, AS= ascorbic acid, Mg/ha= 10<sup>9</sup> g/hectare (10000m<sup>2</sup>).



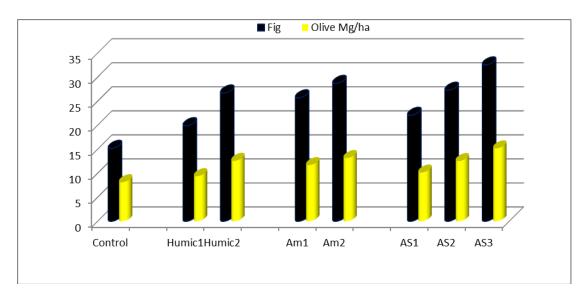



Fig. (1): Effect of foliar humic acid (humic), Amino acid (Am) and ascorbic acid (AS) ascorbic acid on fruits yield (Mg/ha) of fig and olive trees.

## Effect of studied treatments on nutrients contents in fig and olive trees:

The nutrients contents in leaves and fruits of fig and olive trees increased with increasing the organic acids and antioxidant rates. The superior treatment  $(Am_2AS_3 Hu_2)$  achieved highest nutrients contents in leaves and fruits of both figs and olive trees when compared with other studied treatments.

Data at Table (4) and Figs (2 to 5) show that antioxidants treatments showed the highest effect on P and micronutrients contents. Amino acids achieved the highest effect on N contents, while humic acid was the highest for K contents in leaves and fruits of both fig and olive trees. The ascorbic acid increased N, P, K, Fe, Mn, Zn, B and Cu by 27.6, 15.7, 36.4, 10.4, 9.5, 22.7, 51.2 and 30.5% in fig leaves respectively, over control treatment, while that they were 28.4, 24.1, 20.6, 21, 20.4, 34, 49.6 and 37.7% for figs fruits. The amino acid treatment recorded about 35.3, 17.3, 37.6, 9.6, 9.4, 22.5, 49.4 and 29.7% for N, P, K, Fe, Mn, Zn, B and Cu of fig leaves compared to control respectively. While that they were 37.4, 22.5, 21.3, 20.1, 20.5, 33.9,

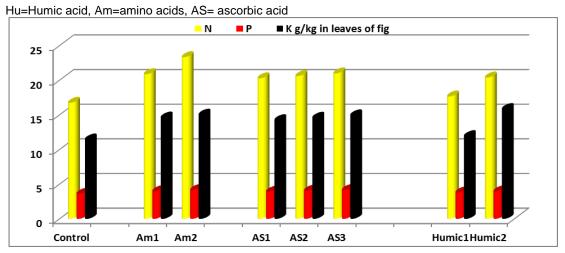
46.4 and 36.9 % for fig fruits. The humic acid achieved increase over control treatment by about 29.7, 14, 41.8, 9.6, 8.3, 19.9, 43.1 and 25.8% for N, P, K, Fe, Mn, Zn, B and Cu of figs leaves respectively, while that they were 27.6, 19.7, 26, 18.1, 16.9, 30.6, 41.8 and 34.3% for fruits of fig trees at (Table 4 and 5). The previous results agree with that obtained by Yousef *et al.* (2011) Hagagg *et al.* (2012) and El-Sayed *et al.* (2014).

Data in Table (5) showed that the same trend of nutrients behavior in fig trees was occurred in olive trees, where the foliar application of ascorbic acid (antioxidants) increased nutrients concentrations of leaves and fruits of olive trees over control treatment by 20.3, 22.6, 29.2, 10.4, 19, 24.5, 45.5 and 46.9% for N, P, K, Fe, Mn, Zn, B and Cu of olive leaves respectively. While that they were 23.4, 27.6, 24.3, 11.1, 14.6, 25.7, 44.6 and 43.7% for olive fruits. The amino acid recorded increases of nutrients above control treatment by about 27, 20, 31.9, 9.8, 17.3, 22.9, 41.2 and 44.5% for N, P, K, Fe, Mn, Zn, B and Cu of olive leaves respectively, while that they were 29.2, 23.9, 25.7, 9.9, 13.7, 24.9, 40.7 and 41.1% for olive fruits. The humic acid achieved

### Foliar application of organic acids and antioxidants impact on fruit .....

increases of nutrients over control treatment by about 19, 18.7, 33.3, 7.8, 15.8, 20.6, 38.6 and 40.8% for N, P, K, Fe, Mn, Zn, B and Cu of olive leaves respectively, while that they were 22.4, 23.6, 30.5, 9.4, 11.9, 21.6, 36.3 and 35.8% for olive fruits.

|                                          | seasons).                  |      |      |      |       |      |      |      |      |        |        |       |          |          |         |      |      |
|------------------------------------------|----------------------------|------|------|------|-------|------|------|------|------|--------|--------|-------|----------|----------|---------|------|------|
| Nutrients content in leaves of fig trees |                            |      |      |      |       |      |      |      |      | Nutrie | nts co | ntent | in fruit | s of fig | g trees | 5    |      |
| Treatments N P K Fe                      |                            |      |      | Mn   | Zn    | В    | Cu   | Ν    | Р    | К      | Fe     | Mn    | Zn       | В        | Cu      |      |      |
|                                          |                            | g/kg |      |      | mg/kg |      |      |      | g/   | kg     |        | mg/kg |          |          |         |      |      |
|                                          | Control                    | 15.2 | 3.5  | 9.5  | 225   | 237  | 109  | 20   | 7.1  | 11.2   | 3.1    | 13.6  | 111      | 116      | 54      | 10   | 3.5  |
|                                          | $Am_0AS_1$                 | 15.5 | 3.6  | 11.4 | 231   | 243  | 115  | 25   | 7.8  | 11.7   | 3.5    | 13.9  | 115      | 120      | 58      | 14   | 4.1  |
|                                          | $Am_0AS_2$                 | 15.8 | 3.8  | 11.6 | 237   | 249  | 122  | 31   | 8.8  | 12     | 3.7    | 14.3  | 123      | 127      | 65      | 16   | 4.6  |
|                                          | $Am_0AS_3$                 | 16.2 | 3.9  | 11.9 | 242   | 255  | 129  | 36   | 9.5  | 12.3   | 3.9    | 14.6  | 129      | 134      | 70      | 18   | 4.9  |
| d,                                       | $Am_1AS_0$                 | 19.1 | 3.7  | 12.3 | 228   | 241  | 117  | 26   | 7.4  | 14.6   | 3.2    | 14.4  | 119      | 123      | 60      | 11   | 3.8  |
| Humic acid <sub>1</sub>                  | $Am_1AS_1$                 | 19.5 | 3.8  | 12.7 | 235   | 247  | 128  | 33   | 8.5  | 15     | 3.6    | 14.8  | 128      | 133      | 69      | 15   | 4.4  |
| umic                                     | $Am_1AS_2$                 | 19.8 | 4    | 12.9 | 238   | 252  | 133  | 38   | 9.3  | 15.3   | 3.8    | 15.2  | 135      | 139      | 75      | 17   | 4.9  |
| Ŧ                                        | $Am_1AS_3$                 | 20.2 | 4.1  | 13.1 | 246   | 257  | 139  | 41   | 9.6  | 15.7   | 4      | 15.6  | 142      | 145      | 80      | 19   | 5.2  |
|                                          | $Am_2AS_0$                 | 22.2 | 3.8  | 12.5 | 233   | 246  | 121  | 28   | 7.8  | 17     | 3.3    | 14.8  | 123      | 128      | 64      | 12   | 4.1  |
|                                          | $Am_2AS_1$                 | 22.5 | 4    | 12.8 | 239   | 252  | 132  | 35   | 9.1  | 17.3   | 3.7    | 15.2  | 129      | 137      | 74      | 16   | 4.9  |
|                                          | $Am_2AS_2$                 | 22.8 | 4.1  | 13.2 | 243   | 259  | 138  | 39   | 9.7  | 17.5   | 3.9    | 15.5  | 135      | 146      | 78      | 18   | 5.2  |
|                                          | $Am_2AS_3$                 | 23.2 | 4.2  | 13.6 | 248   | 263  | 143  | 43   | 10.2 | 18     | 4.1    | 15.8  | 142      | 151      | 84      | 20   | 5.5  |
|                                          | Control                    | 18.3 | 3.7  | 13.4 | 235   | 242  | 118  | 25   | 7.8  | 11.9   | 3.3    | 17    | 121      | 125      | 62      | 12   | 4.1  |
|                                          | Am₀AS₁                     | 18.5 | 3.8  | 15.4 | 242   | 248  | 126  | 29   | 8.5  | 12.2   | 3.7    | 17.5  | 128      | 131      | 69      | 15   | 4.7  |
|                                          | $Am_0AS_2$                 | 18.8 | 3.9  | 15.8 | 249   | 255  | 133  | 34   | 9.3  | 12.6   | 3.9    | 17.8  | 133      | 136      | 74      | 17   | 5.5  |
|                                          | $Am_0AS_3$                 | 19.2 | 4    | 16.2 | 255   | 262  | 139  | 39   | 10.2 | 12.9   | 4      | 18.2  | 139      | 142      | 80      | 19   | 5.9  |
| d <sub>2</sub>                           | $Am_1AS_0$                 | 21.6 | 3.9  | 15.8 | 239   | 251  | 127  | 27   | 8.1  | 15.3   | 3.4    | 17.9  | 127      | 129      | 69      | 13   | 4.3  |
| : aci                                    | Am₁AS₁                     | 21.9 | 4    | 16.4 | 245   | 257  | 133  | 33   | 9.2  | 15.8   | 3.8    | 18.4  | 132      | 137      | 75      | 16   | 5.1  |
| Humic acid <sub>2</sub>                  | $Am_1AS_2$                 | 22.3 | 4.1  | 16.7 | 253   | 263  | 140  | 38   | 9.9  | 16.2   | 3.9    | 18.6  | 138      | 144      | 82      | 18   | 5.5  |
| Ŧ                                        | $Am_1AS_3$                 | 22.6 | 4.2  | 17   | 256   | 266  | 146  | 42   | 10.6 | 16.4   | 4.2    | 19.1  | 143      | 149      | 87      | 21   | 5.8  |
|                                          | $Am_2AS_0$                 | 23.5 | 4    | 16.3 | 242   | 255  | 131  | 29   | 8.6  | 17.4   | 3.5    | 18.4  | 131      | 133      | 74      | 14   | 4.6  |
|                                          | $Am_2AS_1$                 | 23.8 | 4.2  | 16.7 | 249   | 261  | 137  | 36   | 9.8  | 17.9   | 3.9    | 18.7  | 137      | 141      | 79      | 17   | 5.4  |
|                                          | $Am_2AS_2$                 | 24.2 | 4.4  | 17.3 | 255   | 265  | 144  | 39   | 10.6 | 18.2   | 4.1    | 19.1  | 143      | 148      | 85      | 19   | 5.9  |
|                                          | $Am_2AS_3$                 | 24.5 | 4.5  | 17.8 | 259   | 269  | 150  | 45   | 11.2 | 18.5   | 4.3    | 19.4  | 148      | 153      | 90      | 22   | 6.4  |
| LS                                       | D 0.05 Humic               | 0.65 | 0.05 | 1.13 | 3.20  | 2.22 | 2.34 | 0.50 | 0.21 | 0.18   | 0.05   | 1.01  | 2.12     | 1.65     | 1.27    | 0.41 | 0.19 |
| LS                                       | D 0.05 Amino               | 0.3  | 0.02 | 0.1  | 0.32  | 0.49 | 0.66 | 0.35 | 0.05 | 0.27   | 0.01   | 0.06  | 0.58     | 0.67     | 0.60    | 0.10 | 0.03 |
| LS                                       | D <sub>0.05</sub> Ascorbic | 0.02 | 0.01 | 0.04 | 0.34  | 0.33 | 0.40 | 0.29 | 0.05 | 0.02   | 0.02   | 0.02  | 0.36     | 0.39     | 0.35    | 0.15 | 0.03 |
| LS                                       | D <sub>0.05</sub> HuxAm    | 0.43 | 0.03 | 0.14 | 0.45  | 0.69 | 0.93 | 0.50 | 0.07 | 0.27   | 0.01   | 0.06  | 0.82     | 0.94     | 0.84    | 0.15 | 0.04 |
| LS                                       | D <sub>0.05</sub> Hux AS   | 0.03 | 0.01 | 0.05 | 0.48  | 0.35 | 0.56 | 0.42 | 0.07 | 0.03   | 0.02   | 0.03  | 0.51     | 0.56     | 0.50    | 0.21 | 0.04 |
| LS                                       | D <sub>0.05</sub> AmxAS    | 0.03 | 0.01 | 0.06 | 0.59  | 0.57 | 0.69 | 0.51 | 0.08 | 0.04   | 0.03   | 0.04  | 0.63     | 0.68     | 0.61    | 0.26 | 0.05 |
| LS                                       | D <sub>0.05</sub> 3factors | 0.05 | 0.02 | 0.06 | 0.83  | 0.80 | 0.98 | 0.72 | 0.12 | 0.05   | 0.04   | 0.05  | 0.89     | 0.96     | 0.86    | 0.37 | 0.08 |


| Table (4). Effe | ct of foliar | r amino, ∣ | humic and    | l ascorbic   | acids  | applications  | on nutrients   |
|-----------------|--------------|------------|--------------|--------------|--------|---------------|----------------|
| con             | tents in lea | ves and fr | ruits of fig | s trees in F | lashem | valley (avera | ige of the two |
| sea             | sons).       |            |              |              |        |               |                |

Hu=Humic acid, Am=amino acids, AS= ascorbic acid

|                         | seasons).                  |      |         |       |        |        |          |        |      |      |          |        |         |          |         |        |      |
|-------------------------|----------------------------|------|---------|-------|--------|--------|----------|--------|------|------|----------|--------|---------|----------|---------|--------|------|
|                         |                            | Nut  | trients | conte | nts in | leaves | s of oli | ves tr | ees  | Νι   | utrients | s cont | ents ir | n fruits | of oliv | es tre | es   |
| Treatments N P K Fe     |                            |      |         | Mn    | Zn     | В      | Cu       | Ν      | Ρ    | К    | Fe       | Mn     | Zn      | В        | Cu      |        |      |
|                         |                            | g/kg |         |       | mg/kg  |        |          |        |      | g/   | kg       |        | mg/kg   |          |         |        |      |
|                         | Control                    | 14.3 | 4       | 8.7   | 178    | 112    | 82       | 15     | 2.7  | 1.15 | 0.45     | 1.02   | 212     | 137      | 98      | 18     | 3.2  |
|                         | $Am_0AS_1$                 | 14.5 | 4.3     | 9.1   | 185    | 117    | 88       | 18     | 3.3  | 11.8 | 4.9      | 10.4   | 219     | 143      | 105     | 23     | 3.9  |
|                         | $Am_0AS_2$                 | 14.8 | 4.6     | 9.6   | 189    | 122    | 95       | 22     | 3.9  | 12.3 | 5.4      | 10.8   | 226     | 149      | 113     | 27     | 4.6  |
|                         | $Am_0AS_3$                 | 15.1 | 4.9     | 9.9   | 195    | 129    | 102      | 25     | 4.6  | 12.6 | 5.8      | 11.2   | 231     | 155      | 120     | 31     | 5.2  |
| 4,                      | $Am_1AS_0$                 | 16.5 | 4.2     | 9.7   | 180    | 115    | 85       | 17     | 3.1  | 13.7 | 4.7      | 10.7   | 215     | 141      | 108     | 20     | 3.6  |
| acic                    | $Am_1AS_1$                 | 16.9 | 4.4     | 10.2  | 187    | 121    | 92       | 20     | 3.6  | 14.1 | 5.0      | 11.1   | 222     | 146      | 120     | 25     | 4.3  |
| Humic acid <sub>1</sub> | $Am_1AS_2$                 | 17.3 | 4.7     | 10.5  | 192    | 128    | 98       | 23     | 4.2  | 14.4 | 5.5      | 11.4   | 229     | 153      | 126     | 28     | 4.9  |
| Ī                       | $Am_1AS_3$                 | 17.9 | 5       | 10.9  | 195    | 135    | 105      | 26     | 4.8  | 14.7 | 5.9      | 11.7   | 235     | 157      | 133     | 32     | 5.6  |
|                         | $Am_2AS_0$                 | 18.5 | 4.3     | 10.7  | 183    | 117    | 89       | 18     | 3.3  | 15.4 | 4.9      | 11.0   | 219     | 145      | 110     | 22     | 3.9  |
|                         | $Am_2AS_1$                 | 18.7 | 4.5     | 11.1  | 188    | 125    | 96       | 21     | 3.8  | 15.9 | 5.1      | 11.3   | 226     | 151      | 122     | 27     | 4.8  |
|                         | $Am_2AS_2$                 | 19.3 | 4.8     | 11.5  | 195    | 132    | 102      | 24     | 4.5  | 16.3 | 5.7      | 11.9   | 233     | 157      | 128     | 29     | 5.3  |
|                         | $Am_2AS_3$                 | 19.6 | 5.1     | 11.9  | 199    | 139    | 108      | 27     | 5.1  | 16.7 | 6.1      | 12.3   | 238     | 161      | 134     | 33     | 5.8  |
|                         | Control                    | 14.8 | 4.3     | 11.4  | 179    | 119    | 88       | 17     | 3.2  | 12.1 | 5.0      | 13.0   | 220     | 143      | 107     | 20     | 3.6  |
|                         | $Am_0AS_1$                 | 15.1 | 4.6     | 11.9  | 186    | 126    | 96       | 21     | 3.9  | 12.7 | 5.5      | 13.6   | 227     | 149      | 115     | 25     | 4.3  |
|                         | $Am_0AS_2$                 | 15.6 | 4.9     | 12.5  | 191    | 131    | 103      | 25     | 4.5  | 13.0 | 5.9      | 14.0   | 234     | 154      | 123     | 29     | 4.9  |
|                         | $Am_0AS_3$                 | 16.1 | 5.2     | 13    | 198    | 139    | 109      | 28     | 4.9  | 13.2 | 6.4      | 14.4   | 239     | 159      | 128     | 32     | 5.5  |
| 2                       | $Am_1AS_0$                 | 17.1 | 4.4     | 12.6  | 183    | 123    | 91       | 19     | 3.5  | 14.5 | 5.2      | 14.2   | 224     | 146      | 115     | 22     | 3.9  |
| Humic acid <sub>2</sub> | $Am_1AS_1$                 | 17.5 | 4.7     | 12.8  | 189    | 129    | 99       | 23     | 4.3  | 14.7 | 5.6      | 14.6   | 229     | 153      | 121     | 27     | 4.6  |
| umic                    | $Am_1AS_2$                 | 17.9 | 5.1     | 13.1  | 194    | 135    | 106      | 26     | 4.8  | 15.9 | 6.1      | 14.9   | 238     | 158      | 128     | 30     | 5.4  |
| Ĩ                       | $Am_1AS_3$                 | 18.4 | 5.3     | 13.6  | 199    | 143    | 112      | 29     | 5.3  | 16.3 | 6.5      | 15.2   | 245     | 163      | 136     | 33     | 5.9  |
|                         | $Am_2AS_0$                 | 18.9 | 4.6     | 13.1  | 189    | 126    | 95       | 20     | 3.7  | 16.5 | 5.4      | 14.6   | 228     | 149      | 120     | 23     | 4.2  |
|                         | $Am_2AS_1$                 | 19.5 | 4.9     | 13.6  | 195    | 133    | 105      | 24     | 4.7  | 15.8 | 5.8      | 15.2   | 234     | 155      | 125     | 28     | 4.9  |
|                         | $Am_2AS_2$                 | 19.9 | 5.2     | 14    | 201    | 139    | 111      | 27     | 5.3  | 16.2 | 6.2      | 15.7   | 238     | 162      | 134     | 31     | 5.7  |
|                         | $Am_2AS_3$                 | 20.6 | 5.5     | 14.5  | 206    | 145    | 116      | 30     | 5.8  | 16.6 | 6.6      | 16.0   | 243     | 167      | 140     | 34     | 6.1  |
| LS                      | D <sub>0.05</sub> Humic    | 0.19 | 0.09    | 0.77  | 1.03   | 2.29   | 2.12     | 0.79   | 0.17 | 0.2  | 0.2      | 1.0    | 2.24    | 1.50     | 1.79    | 0.45   | 0.09 |
| LS                      | D 0.05 Amino               | 0.21 | 0.01    | 0.09  | 0.35   | 0.37   | 0.36     | 0.12   | 0.03 | 0.2  | 0.0      | 0.1    | 0.31    | 0.35     | 0.67    | 0.13   | 0.03 |
| LS<br>c                 | D <sub>0.05</sub> Ascorbi  | 0.03 | 0.02    | 0.02  | 0.32   | 0.38   | 0.39     | 0.19   | 0.04 | 0.0  | 0.0      | 0.0    | 0.37    | 0.33     | 0.43    | 0.22   | 0.04 |
|                         | D <sub>0.05</sub> HuxAm    | 0.2  | 0.02    | 0.12  |        | 0.53   |          |        | 0.05 | 0.3  | 0.0      | 0.1    | 0.44    | 0.50     |         | 0.19   |      |
|                         | D <sub>0.05</sub> Hux AS   | 0.04 |         |       |        | 0.40   | 0.56     |        |      | 0.0  | 0.0      | 0.0    | 0.53    |          |         | 0.32   |      |
|                         | D <sub>0.05</sub> AmxAS    | 0.04 |         |       |        | 0.40   |          | 0.27   |      | 0.0  | 0.0      | 0.0    | 0.64    | 0.57     |         | 0.32   |      |
|                         | D <sub>0.05</sub> 3factors | 0.04 |         |       | 0.79   |        | 0.00     |        |      | 0.0  | 0.0      | 0.0    | 0.91    | 0.81     |         | 0.33   | 0.07 |
| Ľ                       |                            |      |         |       |        |        | 1        |        |      |      |          |        |         |          |         |        |      |

## Table (5). Effect of foliar amino, humic and ascorbic acids applications on nutrients contents in leaves and fruits of olive trees in Sanab valley (average of the two seasons).

Fawy



Foliar application of organic acids and antioxidants impact on fruit .....

Fig. (2): Effect of organic acids and antioxidants on NPK of fig leaves

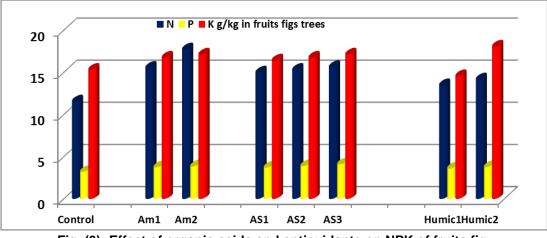
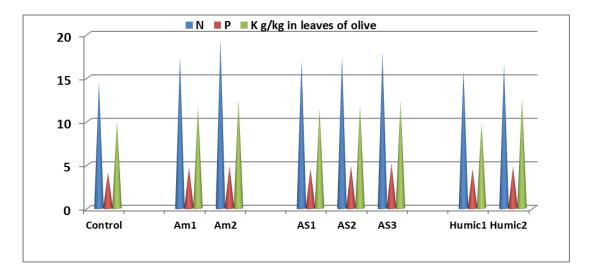




Fig. (3): Effect of organic acids and antioxidants on NPK of fruits fig.



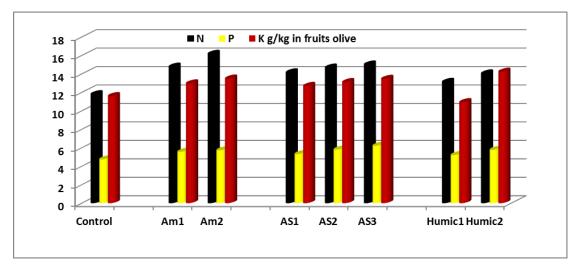



Fig. (4): Effect of organic acids and antioxidants on NPK of olive leaves

Fig. (5): Effect of organic acids and antioxidants on NPK of fruit olive.

The obtained data in Tables (4 and 5) indicated to the impact of interactions between antioxidants and humic acid and amino acids, Where bilateral interactions surpassed the individual one of the three acids (ascorbic acid, and amino acids humic acid) on nutrients contents in the leaves and fruits of fig and olive trees. The results also indicated that the trilateral interactions were the most influential on nutrients contents in the leaves and fruits of fig trees and olive trees, such also the productivity of figs and olive fruits. Figs (2 and 3) showed that the results confirm the existence higher relationship between the N content in plant and amino acids application as well as the N content increased with increasing amino acids application rates. This may be due to that the amino acids contain an amin groups (NH<sub>2</sub>) which containing nitrogen.

The K content in the plant increased with humic acid application rates. Finally, P content in the plant increased with addition of antioxidants this was probably due to participate in the biological processes in the plant. Also the presence of micronutrients increased the enzyme activity which produces the antioxidants; this was leading to increase the antioxidants within the plant, which reflects positively increases the plant's ability to withstand drought stress and salinity. In addition the antioxidants improve the plant growth and raise fruits productivity and quality of the fig and olive trees under conditions of valleys soils in the North West Coast. Therefore, the best treatment (Amino<sub>2</sub> Ascorbic<sub>3</sub> Humic<sub>2</sub>) was a trilateral interaction between study factors, which achieved the highest yield components and nutrients contents in the leaves and fruits of fig and olive trees. This may be due to the role of the studied acids (ascorbic acid, and amino acids humic acid) in plant such as the nutrition, regulation plant growth, active participation in the vital processes within the plant, which increased the plant's ability to resist stress caused by drought or salinity conditions, improved the plant growth, increased the productivity and the quality of the fruits of fig and olive. These findings were reported by Canellas and Olivares (2014) and El-Bassiouny et al. (2014) for humic acid, Abd El-Samad et al. (2010) and Gioseffi et al. (2012) for amino acids and Agatia et al. (2012), and Brunetti et al. (2013) for ascorbic acid.

Regarded to the influence of the studied treatments, the results has confirmed the

beneficial effect of antioxidants in a positive impact on productivity and nutrients concentrations in the leaves and fruits of fig and olive trees. Antioxidants appeared the highest effect followed by amino acids then humic acid showed the lowest effect. The amino acids effect increased yield components and nutrients the concentrations in the leaves and fruits of fig and olive trees with increasing foliar application rates, and it has a higher effect than humic acid. This result may be due to the humic and amino acids functions in plant. The previous results agree with those obtained by Yousef et al. (2011) Hagagg et al. (2010), Hagagg, et al. (2013) and El-Sayed et al. (2014).

# Effect of treatments studied on biochemical of figs and olive trees:

Data in Table (6) explained that the foliar application of amino, humic and ascorbic acids with sufficient mineral fertilization increased total phenols and total antioxidant with sugar and oil content % in figs and olive trees, compared with the control treatment. The total phenols and total antioxidant contents in leaves and fruits of both figs and olive trees increased with increasing amino, humic and ascorbic acids application rates.

Moreover, ascorbic acid treatments showed higher effects for Total phenols, Total antioxidant contents in leaves and fruits of both figs and olive trees than amino and humic acids treatments. In fruits of fig and olive trees sugar and oil contents % increased with increasing application rates of studied factors (ascorbic, amino and humic acids). The effect of trilateral interactions between studied factors were higher for total phenol, total antioxidants in leaves and fruits of fig and olive trees than of bilateral and individual interactions, while individual interactions occurred the lowest one. The sugar contents% in fig fruits and oil contents % in olive fruits illustrate the same trend of total phenols and antioxidants. The most effective treatment (Amino<sub>2</sub> Ascorbic<sub>3</sub> Humic<sub>2</sub>) recorded the highest content of biochemical in leaves and fruits of fig and olive trees in comparison with other treatments. On the other side. the concentrations of total phenols and total antioxidant activity in leaves and fruits of olive trees were higher than in figs trees. The above results agreed with those obtained by Sulaiman and Hassan (2011), Mujić et al. (2012), Malek and Sanaa (2013) and El-Sayed et al. (2014).

In conclusion, under the valleys soils conditions, the foliar application of amino, humic and ascorbic acids (antioxidants) with NPK and micronutrients at one rate was added to all studied treatments (Table 2), the yield components, total antioxidants, total phenol, sugar %, oil % and nutrients concentration of fig and olive trees were increased with increasing the organic acids and antioxidants rates. The beneficial effect of treatments arranged descending by as follows; ascorbic acid (antioxidants) > amino acids > humic acid > control. The most effective treatment was Amino<sub>2</sub> Ascorbic<sub>3</sub> with humic<sub>2</sub> (ascorbic acid at 600 ppm) with amino and humic acids (at 400 ppm), which achieved 41.2 Mg ha<sup>-1</sup>figs fruits (64 trees/ha) and 18.9ton of olive fruits/fed (100 trees/ha). The foliar application of antioxidants recorded higher increases of vield parameters and nutrients content in leaves and fruits of fig and olive trees than amino acids and humic acid, while the humic acid showed the lowest effect. The effect of trilateral interactions between studied factors (ascorbic, and amino and humic acids) were higher for yield component, nutrients contents, total phenol, total antioxidants in leaves and fruits of fig and olive trees than of bilateral and individual interactions, while the individual interactions showed the lowest effect.

### Fawy

|                                                                                                                                                                                                                                                                            |                               | -       |         | Fig tree |         |        |         |         | Olive tree | ;       |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|---------|----------|---------|--------|---------|---------|------------|---------|--------|
| <b>—</b>                                                                                                                                                                                                                                                                   |                               | T.Antio | xidants | T.ph     | enols   | Sugar  | T.Antio | xidants | T.ph       | enols   | Oil    |
| 1 re                                                                                                                                                                                                                                                                       | eatments                      | μg AS   | SA/ml   | µmol G   | GalA/ml | %FW    | µg As   | SA/ml   | µmol G     | GalA/ml | %FW    |
|                                                                                                                                                                                                                                                                            |                               | Leaf    | Fruits  | Leaf     | Fruits  | Fruits | Leaf    | Fruits  | Leaf       | Fruits  | Fruits |
|                                                                                                                                                                                                                                                                            | Control                       | 248     | 158     | 467      | 293     | 29.8   | 279     | 192     | 663        | 384     | 15.2   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_1$                    | 512     | 379     | 1086     | 782     | 31.3   | 507     | 415     | 1183       | 827     | 16.2   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_2$                    | 573     | 438     | 1177     | 865     | 32.5   | 584     | 461     | 1279       | 918     | 17.8   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_3$                    | 642     | 497     | 1281     | 952     | 33.4   | 657     | 516     | 1395       | 987     | 18.5   |
| <del>,</del>                                                                                                                                                                                                                                                               | $Am_1AS_0$                    | 255     | 171     | 486      | 325     | 31.8   | 308     | 214     | 685        | 417     | 17.1   |
| Humic acid <sub>1</sub>                                                                                                                                                                                                                                                    | $Am_1AS_1$                    | 557     | 411     | 1115     | 812     | 34.7   | 532     | 431     | 1217       | 854     | 18.5   |
| umic                                                                                                                                                                                                                                                                       | $Am_1AS_2$                    | 622     | 472     | 1208     | 895     | 35.6   | 612     | 487     | 1309       | 946     | 19.3   |
| Ť                                                                                                                                                                                                                                                                          | $Am_1AS_3$                    | 695     | 546     | 1306     | 987     | 36.4   | 685     | 548     | 1423       | 1012    | 20.8   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_0$                    | 273     | 194     | 514      | 347     | 32.7   | 332     | 247     | 716        | 445     | 18.5   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_1$                    | 595     | 451     | 1164     | 858     | 35.7   | 569     | 495     | 1242       | 892     | 19.8   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_2$                    | 662     | 514     | 1269     | 953     | 36.3   | 654     | 596     | 1341       | 983     | 20.3   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_3$                    | 734     | 583     | 1373     | 1028    | 37.2   | 719     | 599     | 1459       | 1045    | 21.5   |
|                                                                                                                                                                                                                                                                            | Control                       | 267     | 176     | 492      | 330     | 32.5   | 336     | 248     | 744        | 473     | 17.5   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_1$                    | 607     | 425     | 1137     | 819     | 34.5   | 585     | 469     | 1278       | 920     | 18.1   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_2$                    | 668     | 581     | 1238     | 898     | 35.4   | 673     | 534     | 1382       | 1013    | 19.6   |
|                                                                                                                                                                                                                                                                            | $Am_0AS_3$                    | 731     | 658     | 1343     | 995     | 36.3   | 748     | 596     | 1496       | 1083    | 20.9   |
| <sup>5</sup>                                                                                                                                                                                                                                                               | $Am_1AS_0$                    | 287     | 196     | 525      | 366     | 35.7   | 369     | 272     | 772        | 507     | 19.4   |
| Humic acid <sub>2</sub>                                                                                                                                                                                                                                                    | $Am_1AS_1$                    | 635     | 464     | 1178     | 862     | 37.9   | 619     | 505     | 1315       | 958     | 20.3   |
| Jmic                                                                                                                                                                                                                                                                       | $Am_1AS_2$                    | 694     | 538     | 1276     | 954     | 38.5   | 708     | 576     | 1416       | 1049    | 21.4   |
| Ť                                                                                                                                                                                                                                                                          | $Am_1AS_3$                    | 772     | 593     | 1379     | 1037    | 39.8   | 774     | 637     | 1513       | 1114    | 22.2   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_0$                    | 295     | 218     | 553      | 398     | 37.9   | 492     | 293     | 798        | 538     | 20.5   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_1$                    | 675     | 492     | 1216     | 917     | 39.3   | 655     | 542     | 1354       | 987     | 21.3   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_2$                    | 746     | 564     | 1325     | 1018    | 40.7   | 748     | 605     | 1463       | 1073    | 22.2   |
|                                                                                                                                                                                                                                                                            | $Am_2AS_3$                    | 798     | 631     | 1432     | 1076    | 41.3   | 819     | 679     | 1565       | 1152    | 23.5   |
| LSD                                                                                                                                                                                                                                                                        | 0.05 Humic                    | 19.3    | 17.2    | 15.5     | 13.7    | 1.01   | 26      | 18      | 28.3       | 27.6    | 0.56   |
| LSD                                                                                                                                                                                                                                                                        | 0.05 Amino                    | 3.2     | 2.5     | 3.8      | 4       | 0.22   | 3.9     | 3.9     | 3.2        | 3.1     | 0.15   |
| LSD                                                                                                                                                                                                                                                                        | 0.05 Ascorbic                 | 9.2     | 7.9     | 17.2     | 13.6    | 0.08   | 7.5     | 7       | 14.9       | 12.3    | 0.06   |
|                                                                                                                                                                                                                                                                            | <sub>0.05</sub> HuxAm         | 4.6     | 3.6     | 5.4      | 5.7     | 0.31   | 5.5     | 5.5     | 4.5        | 3       | 0.14   |
|                                                                                                                                                                                                                                                                            | LSD <sub>0.05</sub> Hux AS 13 |         | 11.2    | 18.2     | 14.3    | 0.11   | 7.9     | 9.9     | 15.8       | 13      | 0.09   |
| -                                                                                                                                                                                                                                                                          | <sub>0.05</sub> AmxAS         | 15.9    | 13.7    | 22.2     | 17.6    | 0.14   | 13      | 12.1    | 19.3       | 15.9    | 0.11   |
| LSD <sub>0.05</sub> 3factors         16.8         19.4         31.5         24.8         0.19         18.3         17.2         27.3         22.5           ug ASA/ml= ug of Ascorbig acid/ml extract         umol CalA/ml= ug of Ascorbig acid/ml extract         T=Total |                               |         |         |          |         |        | 0.15    |         |            |         |        |

| Table (6). Effect of amino, humic | and ascorbic acids on biochemical in the fig and olive |
|-----------------------------------|--------------------------------------------------------|
| trees                             |                                                        |

μg ASA/ml= μg of Ascorbic acid/ml extract, μmol GalA/ml= μmol of Gallic acid/ml extract, T=Total

### REFERENCES

- Abbasi, Y., D. Bakhshi, A. Forghani, A. Sabouri and M. Porghauomy (2012). Effect of Macro and Micronutrients Sprays on Fruit Quality and Quantity of 'Zard' and 'Rowghani' Olive (*Olea europaea L.*) Cultivars in Northern Iran. American-Eurasian J. Agric. And Environ. Sci., 12 (12): 1548-1552.
- Abd El-Samad, H. M., M. A. K. Shaddad and N. Barakat (2010). The role of amino acids in improvement in salt tolerance of crop plants. Journal of Stress Physiology & Biochemistry, 6(3):25-37.
- Abdel-Rahman, A. M. (2012). Effect of cement dust pollution on the yield and quality of *Ficus carica L*. Fruits. Journal of Life Sciences 6:276-282.
- Agatia, G., E. Azzarellob, S. Pollastri and M. Tattini (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196:67–76. Aydin, S., H. Çakici and H. Yener (2001).
- Aydin, S., H. Çakici and H. Yener (2001). The effect of zinc applications from soil and foliage on some physical characters in fig (Ficus carica L.). ANADOLU, J. of AARI, 11 (1): 91 – 102
- Azad, A.M., Z.R. Ibrahim and A.S. Abdurrahman (2014). Effect of foliar spray of humic acid, ascorbic acid, cultivars and their interactions on growth of olive (*Olea european L.*) transplants cvs. khithairy and sorany. Journal of Agriculture and Veterinary Science, 7(4):18-30.
- Barranco, D., E. Hicran, M.D. Concepción,
  B. Angjelina and O. Arquero (2010).
  Factors influencing the efficiency of foliar sprays of monopotassium phosphate in the olive. International Journal of Plant Production 4(3): 235-240.
- Brunetti, C., M.D. Ferdinando, A. Fini, S. Pollastri and M. Tattini (2013). Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci.,14: 3540-3555.
- Canellas, L.P. and F. L Olivares (2014). Physiological responses to humic substances as plant growth promoter. Canellas and Olivares Chemical and Biological Technologies in Agriculture, 1(3):1-11.

- Cottenie, A., M. Verlso, L. Kilkens, G. Velghe and R. Camerlynck (1982). Chemical Analysis of Plants and Soils. Lab. Agroch. State Univ. Gent, Belgium.
- El-Bassiouny, H.S.M., B.A. Bakry, A.A. Attia and M.M. Abd Allah (2014). Physiological role of humic acid and nicotinamide on improving plant growth, yield, and mineral nutrient of wheat (*Triticum durum*) grown under newly reclaimed sandy soil.Agricultural Sciences, 5: 687-700.
- El-Sayed, O.M., O.H.M. El-Gammal and A.S.M. Salama (2014). Effect of ascorbic acid, proline and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Scientia Horticulturae, 176(11):32–37.
- Ercisli, S., M. Tosun, H. Karlidag, A. Dzubur, S. Hadziabulic and Y. Aliman (2012). Color and antioxidant characteristics of some fresh fig (*Ficus carica L.*) genotypes from northeastern turkey.Plant Foods Hum Nutr., 67:271-276.
- Fahramand, M., H. Moradi, M. Noori, A. Sobhkhizi, M. Adibian, V. Abdollahi and K. Rigi (2014). Influence of humic acid on increase yield of plants and soil properties. International Journal of Farming and Allied Sciences,3(3):339-341.
- Gill, S.S. and N. Tuteja (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48:909-930.
- Gioseffi, E., A. D. Neergaard and J. K. Schjoerring (2012). Interactions between uptake of amino acids and inorganic nitrogen in wheat plants... Biogeosciences, 9: 1509–1518.
- Gomez, K.A. and A.A. Gomez (1984). Statistical Procedures for Agricultural Research. 2nd ed., Wiley, New York.
- Hagagg, L.F. H., H. S. A. Hassan, M. Abou Rawash, H. El-Wakeel and A. Abdel-Galel (2010). Effect of mineral, organic nitrogen fertilization and some other treatments on vegetative growth of picual olive young trees. Journal of American Science, 6(12): 174-179.
- Hagagg, L.F. H., M.F.M. Shahin, A. Maha, H.A. Mahdy and Eman S. El Hady (2013). Studies on the effect of Vinasse, amino acids and humic acid substances

as soil applications on fruit quality and quantity of Aggizi olive trees. Journal of Applied Sciences Research, 9(3): 1635-1641.

- Hagagg, L.F., N. Abd-Alhamid, N.S. Mustafa, M.F.M. Shahin and S.E. El Hady (2012). Effect of different Nitrogen applications and organic matter on growth performance of Maraky olive seedlings. J. of Applied Sci.Res.,8(4):2071-2075.
- Hamid, A.A., O. O. Aiyelaagbe, L. A. Usman, O. M. Ameen and A. Lawal (2010). Antioxidants: Its medicinal and pharmacological Applications. African Journal of Pure and Applied Chemistry,4(8):142-151.
- Horowitz, W. (Ed.). (2000). AOAC Official Methods of Analysis (17th ed., sections 50.1.21 (992.05), 45.2.03 (944.12), and 45.2.01 (960.46). Gaithersburg, MD: Association of Official Analytical Chemists International.
- Jagtap, P.B., S. P. Gaikwad and A.A. Bhagat (2012). Contribution of micronutrient fertilizers in improving yield and quality of fig (*Ficus carica*) and economics of their application.Ecology, Environment and Conservation,18(2);303-308.
- James, C.S. (2004). Analytical Chemistry of Food. Seale- Hayne Faculty of Agriculture, Food and Land use, Department of Agriculture and Food Studies, University of Polymouth, UK, 1: 96-97.
- Kates, M. (1972). Techniques of Lipidology, Isolation, Analysis and Identification of Lipids. North Holland Publishing Company, Amsterdam, London.
- Khaled, H. and H.A. Fawy (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Res., 6, 2011 (1): 21–29.
- Klute, A.A. "edt" (1986). Methods of Soil Analysis. Part 1 2<sup>nd</sup> ed. American Society of Agronomy. Inc. Publishes, Madison, Wisconsin, USA.
- Maksoud, M.A., Malaka A. Saleh, M.S. El-Shamma and Amera A. Foua (2009). The Beneficial Effect of Biofertilizers and Antioxidants on Olive Trees under Calcareous Soil Conditions. World J. of Agric. Sci., 5 (3): 350-352.

- Malek, B. K. and M. Sanaa (2013). Response of Arbequina olive tree to reasonable fertilization. Afr. J. Agric. Res. Vol. 8(29):3911-3920.
- Mimoun, M. B., O. Loumi, M. Ghrab, K. Latiri and R. Hellali (2004). Foliar Potassium Application on Olive Tree. IPI regional workshop on Potassium and Fertigation development in West Asia and North Africa; Rabat, Morocco, 24-28.
- Mujić, I., S. Dudas, H.M. Skutin, D. Perusic, Z. Zeković, Z. Lepojević, M. Radojković, S. Vidović, S. Milošević and E.O. Mesic (2012). Determination of antioxidant properties of fig fruit extracts (*Ficus carica L.*). ISHS Acta Horticulturae 940,1,100: 7567-7572.
- Ortiz-Lopez, A., H.C. Chang and D.R. Bush (2000). Amino acid transporters in plants. Biochimica et Biophysica Acta 1465:275-280.
- Page, A.L., R.H. Miller and D.R. Keeney (1984). Methods of soil analysis. Part 2: Chemical and Microbiological Properties. Second edition. Agronomy J. 9: 2, Am. Soc. Agron. Inc., Soil Sci. Soc. Am. Inc. Pub. Madison, Wisconsin, USA.
- Petrakis, C. (2006). Olive Oil Extraction. Mediterranean Agronomic Institute of Chania, 1,13: 191-223.
- Prieto, P., M. Pineda and V. Aiguel (1999). Spectrophotometer Quantization of antioxidant capacity through the formation of Phosphomolybdenum Complex: Specific application to the determination of vitamin E. Anal. Biochem., 269: 337-341.
- Rimmer, Smith (2009). Antioxidants in soil organic matter and in associated plant materials. European J. of Soil Sci. 60 (2) :170-175.
- Shalaby, T.A. and H. El-Ramady (2014). Effect of foliar application of biostimulants on growth, yield, components and storability of garlic (Allium sativum L.). AJCS, 8(2): 271-275.
- Slinkard, K. and V.L. Singleton (1977). Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Viticult. 28: 49-55.
- Sulaiman, G. M. and S. H. Hassan (2011). Determination of Sugars and Mineral Salts in Fresh Figs of Iraqian Cultivars. Tikrit Journal of Pure Science 16(1): 48-50.

#### Foliar application of organic acids and antioxidants impact on fruit .....

Tekaya, M., M. Beligh, B. Amani, Faouzi, Attia, C. Hechmi, D. Mohamed and M. Hammami (2013). Enhancement of Antioxidants in Olive Oil by Foliar Fertilization of Olive Trees. Journal of the American Oil Chemists' Society, 90(9):1377-1386. Yousef, A.R.M., E.A.M. Mostafa and M.M.S. Saleh (2011). Response of olive seedlings to foliar sprays with amino acids and some micro elements. Agric. Biol. J. N. Am., 2(7): 1108-1112.

# تأثير الاضافة الورقية للاحماض العضوية ومضادات الاكسدة على محصول وجودة ثمار اشجار التين والزيتون في بعض وديان الساحل الشمالي الغربي لمصر

### حسن عبد العاطى فاوى

قسم خصوبة وميكروبولوجيا الاراضي , مركز بحوث الصحراء , القاهرة

### الملخص العربى

اقيمت تجربتين حقليتن فى مزرعتين موجودتين فى الساحل الشمالى الغربى لمصر . ، كانت المزرعة الاولى اشجار زيتون منزرعة فى وادى سنب بينما المزرعة الاخرى اشجار نين فى وادى هاشم والتى تم اختيارهم على اساس التماثل او التجانس بين الاشجار . قوام اراضى هذة المزارع رملية طميية، المصدر الرئيسى لماء الرى لاشجار التين والزيتون هو ماء المطر الموسمى . بعض اضافات لماء الرى تتوقف على كميات المياة المخزونة فى ابار الوادى، مساحة شجرة الزيتون ١٠٠ م٢ (١٠٠ شجرة/ هكتار)، بينما شجرة التين ١٥٦ م٢ (٢٤ شجرة/ هكتار). الهدف من هذا البحث هو دراسة تاثير الاضافة الورقية للاحماض الامينية وحامض الهيومك ومضادات الاكسدة على ثمار اشجار التين والزيتون

الاضافة الورقية للاحماض الامينية وحامض الهيومك ومضادات الاكسدة مثل حامض الاسكوربيك مع تسميد معدنى تمت اضافتها، قياسات المحصول، مضادات الاكسدة الكلية والفينولات الكلية و السكريات الكلية % ومحتوى الزيت % وتركيزات العناصر الغذائية فى اشجار التين والزيتون قد زدات مع زيادة معدلات الاضافات الورقية للاحماض الامينية وحامض الهيومك ومضادات الاكسدة. التاثير النافع لاضافة المعاملات على قياسات المحصول ثمار التين والزيتون تم الترتيب كالاتى مضادات الاكسدة التاثير النافع لاضافة المعاملات على قياسات المحصول ثمار التين والزيتون تم وحامض الهيومك ومضادات الاكسدة > الاحماض الامينية > حامض الهيومك > الكنترول. المعاملة الاكثر تاثيرا كانت هى الترتيب كالاتى مضادات الاكسدة > الاحماض الامينية > حامض الهيومك > الكنترول. المعاملة الاكثر تاثيرا كانت هى (2. جزء فى المليون) والتى حققت 1.12 مليون جرام / هكتار من ثمار التين و 1.89 مليون جرام / هكتار من ثمار الزيتون. اضافة مضادات الاكسدة سجل اعلى زيادة فى قياسات المحصول عند مقارنتها بتاثير الامينية وحامض الهيومك، بينما حامض الهيومك كان الاقل تأثيرا. تأثير التفاعلات الثلاثية بين عوامل الامينية الاميونيون. اضافة مضادات الاكسدة سجل اعلى زيادة فى قياسات المحصول عند مقارنتها بتاثير الاحماض الامينية وحامض الهيومك، بينما حامض الهيومك كان الاقل تأثيرا. تأثير التفاعلات الثلاثية بين عوامل الدراسة (حامض الاسكورييك، والاحماض الامينية، وحامض الهيوميك) كانت الاعلى لقياسات المحصول، ومحتوى المغذيات، والفينولات وحامض الهيومك، بينما حامض الهيومك كان الاقل تأثيرا. تأثير التفاعلات الثلاثية بين عوامل الدراسة (حامض الاسكورييك، والاحماض الامينية، وحامض الهيوميك) كانت الاعلى لقياسات المحصول، ومحتوى المغذيات، والفينولات الاسكورييك، مادادات الاكسدة الهيومك كان الاقل تأثيرا. تأثير التفاعلات الثلاثية بين عامل الدراسة (حامض الاسكوريك، والاحماض الامينية، وحامض الهيوميك) كانت الاعلى لقياسات المحصول، ومحتوى المغذيات، والفينولات الاسكوريك، مادادات الاكسة فى اوراق وشار بالمقارنة بالتفاعلات الثائية والاحادية بينما التفاعلات الاحادية بانا Fawy