Mansoura University

* Open Notebook Examination (It is allowed to use lecture notebook).
** Attempt to answer all questions and assume any missing data.

Question 1:
 (15% of full mark)

The drill brace $\boldsymbol{a b c d e f g}(\mathrm{d}=12 \mathrm{~mm})$ is made from a bent rod of 450 MPa yield steel, and is loaded as shown in Fig. (1) by the operator.
The simple support at \mathbf{g} also provides the torque reaction necessary for equilibrium.

摂 What is the factor of safety?

Question 2:

(60% of full mark)
The four gears shown in Figure (1), have a module of $4 \mathrm{~m}_{\mathrm{i}}$ a and a pressure angle of 20°. The motor shaft rotates 600 rpm and transmits 20 kW . Other data are on the drawing.
(a) What is the speed ratio between the motor (input) and output shafts?
(b) Determine all force components that the 20 -tooth pinion applies to the 50 tooth gear, also the force components that the 50 -tooth gear exerts on the 25 -tooth pinion. Make a sketch showing the magnitude and direction of these forces applied to the gears.
(c) The total radial and axial reactions acting on ball bearins; "A and B".
(d) Design the upper shaft which supported by the ball bearings "A and B"
(e) Make a constructional drawing (one sectional view), showing all details of the assembly.

Figure (1)

Question 3:

A screw of 50 mm . outside diameter (of square cross-section) is used in a screw-jack. Assuming that the height of nut is 1.5 times the outside diameter of the screw, and coefficient of friction is to be 0.15 . If the screw-jack is used for lifting a 20 KN load at the rate of $0.02 \mathrm{~m} / \mathrm{s}$,
(a) What is the corresponding rotating speed of the screw in rpm?
(b) Determine the pitch, lead, mean diameter, number of engaged threads, and helix angle of the screw.
(c) Fstimate the require 1 torque for raising and for lowering the load.
(d) Calculate the maximum working values of torsional axial, shear, and bearing stresses under operating conditions.

Question 4: (15% of full mark)

A bracket is supported by means of four bolts as shown in Fig. (2). Determine the safe diameter of bolts.

Figure (2)

With my Be:t Wishes and Good Luck for you \&
Di. Samy El-Gayyar

