
MANSOURA UNIVERSITY Faculty of Engineering Dept. of Production Eng.& M/Cs Des 1st Year Of Production Eng.	Materials Science (1) Code No. 51 13 Final Exam: 15-01-2014 Time Allowed: 2 HOURS Max. Mark [40 Marks]
Please, Answer all the following Questions:-	
 Q1-a) Describe the ionic bonding between magnesium (Mg) Zadetermine the valance electronic. -b) Define the following:- Electronegativity Quantum numbers Van der Wa 	[3]
 Q2-a) Determine the Miller indices for the directions shown in Fig. (2) -b) Determine the Miller indices for the planes shown in Fig. (2) -c) An X-ray film with a 50 mm radius is used in an X-ray came exit port of beam is produced. Determine the interplanar specificated line if copper radiation (λ = 1.5418 Å) is used. 	[3] [3] [3] [3] [3] [4] [4] [6] [6] [6] [6] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7
 Q3-a) Define the following:- Frenkel defect Interstitial defect Schottkly defect. -b) Figure (3) shows the initial portion of the stress-strain of temperatures. (a) Calculate the modulus of elasticity at each offset yield strength at each temperature. (c) Suppose a 250 diameter is subjected to a load of 17500 Kg. Calculate the temperature (assuming that dimensional changes are due of the stress of th	curves for a titanium alloy at three temperature. (b) Calculate the 0.2% mm. long specimen with a 25 mm final length of the specimen at each
 Q4-a) A Brinell hardness test using a 3000 Kg load with a 10 mm of impression on steel. Calculate the Brinell hardness number endurance limit of the steel. -b) What effect of the temperature and crystal structure upon the -c) What is Larson-Miller parameter? 	and estimate the tensile strength and [2]

1/2

Prof. Dr Eng. magdy SAMUEL

P.T.O.

GOOD LUCK

All the Question are Required To be answered. Time: 2 hours Production Eng. & Mech. Design Dept.
First year students.
Engineering Materials I
Final Exam, Jan. 2014

- 1-Choose the correct sentence and state why?
- A-Magnetite, Dolomite & Silica are considered as an Iron ore.
- /b –Pig Iron or plane carbon steel may have the following composition; 0.1 % C , 0.5 % Si , 0.5 % Mn , 0.03 P and 0.03 S .
- c The removal of S is easier in the Blast furnace because it has: a reducing Oxidizing atmosphere?
- d-Silica Bricks or Alumina Bricks are used for Bessemer converters.
- e The solubility of gases in molten steel is higher or lower as the temperature Increases?
- 2-Draw a neat flow sheet for a direct reduction plant.
- 3 Write shortly on each of the following:
 - a The efficiency of the blast furnace.
 - b Three different methods for steel degasing.
- A- Illustrate the Zones of reactions in a blast furnace.
- 5-Draw a figure to show the relation between temperature gradient and Variations in gas analysis with distance from tuyeres in a blast furnace.
- -6 We have in Egypt two different integrated steel plants write briefly on each Of them to illustrate the differences between them.

ع التوفيق ،،،،، ا.د.السيد عبد الرسول ٩. د . حمر *ما موا (كما م*)