Menoufiya University Faculty of Engineering Shebin El- Kom First Semester(Jan) Examination Academic Year: 2013-2014 Date: 21/1/2014

Dept.: Production Engineering Year : Post-Graduate Diploma Subject: Robotics Code : PRE 514 Time Allowed: 3 hours Total Marks : 100 Marks

Allowed Tables and Charts: None Examiner: Dr/ Mohamed Hesham Belal.

Answer All The Following Questions:

Question No.(1):

- (a)- Describe briefly the main parts of an industrial robot.
- (b)- Robotic systems are generally classified to six groups according to different views. Investigate briefly.
- (C)- Compare between the rigid domain and flexible domain for dynamic analysis of performance of industrial robot.
- (d)- In practice, six major applications of industrial robot are usually take place in industrial fields. Explain using brief items.

Question No.(2):

The wrist of a manipulator is represented by three successive rotations (Roll- Pitch-Yaw) denoted by $(\theta_1, \theta_2, \theta_3)$ respectively as shown in Fig.(1). It is assumed that the arm end-point is stationary and can be considered as the stationary base frame for the wrist.

2)- Determine the solution for the three joint 1)- Obtain the direct kinematic model.

variables for a given tool point orientation matrix A_{zE} as follows:

Question No.(3):

For the 4-DOF- manipulator arm shown in Fig.(2).

- 1- Assign frames and tabulate the joint-link parameter, (Put $\theta_2 = 90^{\circ}$),
- 2- Determine the transformation matrices relating successive links,
- 3- Obtain the orientation and position of the end-effector relative to the base,
- 4- Check the correctness of the results and describe it at the home position.
- 5- Compute the orientation and position of the end-effector if the joint variable vector is : $q = [60^{\circ} 400 \text{ mm} 500 \text{ mm} 45^{\circ}]^{\mathsf{T}}$ with : L₁ = 300 mm, L₂= 200 mm.

Question No.(4):

[20 Mark]

Two link planar manipulator in rigid domain, as shown in Fig.(3), connected by the three powered joints for the flexible end-effector.

- 1)- Derive the general form of the Jacobian matrix,
- 2)- Derive the equations of motion of the system assuming small vibration about a reference position, and
- 3)- Calculate the equivalent actuating moments at the joints to keep the manipulator in static equilibrium.

Page (1/2)

[20 Mark]

[20 Mark]

Question No.(5):

[20 Mark]

A simplified model of commercial robotic manipulator as a single degree of freedom system is shown in Fig.(4). The input is the motor magnetic torque T_m and the output is the angular speed ω_r of the robot arm. No external load torque at the robot arm is presented and the gear ratio is equal (1/r).

- 1)- Derive the equations of motions of the system in terms of the motor rotation θ_m and the robot arm rotation θ_r ,
- 2)- Compute the deformed natural frequency of the system and hence compute the ratio θ_r/θ_m .

Fig.(3)

Fig.(4)

With my best wishes

This exam measure the following ILOs												
Ouestion No.	O1-a	01-b	Q1-c	Q1-d	Q2	Q3	Q4	Q5	Q2	Q3	Q4	Q5
Quebecontest	a-2	a-3	a-4	a-3	b-2	b-5	b-2	b-5	c-1	c-2	c-2	c-1
Skills	Knowledge & Understand				Intellectual				Professional			

Page(2/2)