GENERALISED SIMPLE EIGENVALUES AND BIFURCATION FOR A LINKED MULTIPARAMTER EIGENVALUE PROBLEM

BY
M. H. SALLAM AND S. I. NADA
Faculty of Science, Menoufia University

1. Introduction

Suppose that we are given a multiparameter system of equations,

$$
\begin{align*}
& L_{i}(\underline{\lambda}) x_{i}=f\left(\underline{\lambda}, x_{1}, \ldots, x_{m}\right) \quad ; \tag{1.1}\\
& L_{i}(\underline{\lambda})=\mathrm{A}_{\mathrm{i}}-\sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{j}} \mathrm{~B}_{\mathrm{ij}}, \quad \mathrm{i}=1, \ldots, \mathrm{~m} \quad \mathrm{~m} \leq \mathrm{n}
\end{align*}
$$

where $A_{i}, B_{i j}$ are bounded self-adjoint operators on Hilbert spaces $H_{i}, i=1, \ldots, m$ and $\lambda_{j}, j=1, \ldots, n$ are real paramters. An eigenvalue of (1.1) is a point $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ for which each equation possess a solution $x_{i} \neq 0$. The spectral theory of multiparameter system of the case $m=n$ has been considered in many recent papers, see e.g. [1.6.8] for abstract problem and in [2,3,4,5] for a linked system of non-liner second order ordinary differential equation. In this paper we are concerned with the problem of bifurcation of solutions of the non-linear problem (1.1) at a generalised simple eigenvalue of the linearised problem for the case $\mathrm{m} \leq \mathrm{n}$. The result is obtained using the concept of generalised simple eigenvalues that we have introduced in [7]. Using this concept we also invstigate the multiparameter eigenvalue problem in the case where some of the operators depend analytically on a perturbation parameter. The distribution of this paper is as follows:

M. H. Sallam

In section 2 we give our definition for the generalised simple eigenvalue. In section 3 . Theorem 3.2, show that, under some standard conditions on the nonlinear terms, (1.1) has a set of solutions bifurcating from the trivial solution $(\lambda, 0) \in \mathfrak{R}^{n} \times X$ at such generalised simple eigenvalues. Theorem 3.3, gives the same results when some of the operators depend analytically on perturbation parameter.

2. Definition of a generalised simple eigenvalue

Let X, Y be real banach spaces and let $a, B_{i}, i=1, \ldots, n$ be bounded linear operators from X into Y . Consider the following problem

$$
\begin{equation*}
L(\underline{\lambda}) x+N(\underline{\lambda}, x)=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
L(\underline{\lambda})=A-\sum_{j=1}^{n} \lambda_{j} B_{j} \tag{2.2}
\end{equation*}
$$

and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathfrak{R}^{n}$
In [7] we have introduced the following definition of a generalised simple eigenvalue.

Definition 2.1

$\underline{\lambda}^{0}=\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right) \in \mathfrak{R}^{\mathrm{n}}$ is a gteneralised simple eigenvalue for ($\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$) if;
(i) $\operatorname{dim} N\left(L\left(\underline{\lambda}{ }^{3}\right)=1\right.$;
(ii) $\mathrm{L}\left(\underline{\lambda}^{\circ}\right)$ is a fredholm operator of index $1-\mathrm{m}$ where $\mathrm{m} \leq \mathrm{n}$;
(iii) $\mathrm{B}_{\mathrm{i}} \mathrm{x}_{0} \notin \mathfrak{P}\left(\mathrm{~L}\left(\underline{\lambda}^{0}\right)\right), \quad \mathrm{i}=1, \ldots, \mathrm{n}$ where

$$
\begin{aligned}
& x_{0} \in N\left(L\left(\lambda^{0}\right)\right) \\
& \text { and } Y=\operatorname{span}\left\{B_{i} x_{0}, i=1, \ldots, n\right\} \oplus M\left(L\left(\lambda^{v}\right)\right) .
\end{aligned}
$$

By using definition 2.1 we have proved in [7] the following result.

THEOREM 2.2

Let $\underline{\lambda}^{0} \in \mathfrak{R}^{n}$ alised simple eigenvalue of (2.1) and let $N: \Re^{n} \times X \rightarrow Y$ be a non-linear mapping such that:

$$
\begin{aligned}
& C 1: N \in C^{r}\left(\Re^{n} x \quad X, Y\right) \quad, r \geq 2 ; \\
& C 2: N(\underline{\lambda}, 0)=0 ; \\
& C 3: D_{x} N\left(\underline{\lambda}_{m}, \underline{\mu}_{-m}^{\circ}\right), 0 \quad=0
\end{aligned}
$$

where

$$
\underline{\lambda}_{m}=\left(\lambda_{1}, \ldots, \lambda_{m}\right), \quad \underline{\mu}_{m}=\left(\underline{\lambda}_{m+1}, \ldots, \underline{\lambda}_{n}\right) .
$$

Then $\quad\left(\underline{\lambda}^{\circ}, 0\right) \in \mathfrak{R}^{n} x \quad \mathrm{X}$ is a bifurcation point of solutions of (2.1) and there exists a set of solutions

$$
\begin{aligned}
& \left\{(\underline{\lambda}, \mathrm{x})=\left(\left(\hat{\lambda}_{\mathrm{m}}^{*}\left(\mathrm{u}, \mu_{\mathrm{m}}\right), \mu_{\mathrm{m}}\right), \mathrm{x}^{*}\left(\mathrm{u}, \mu_{\mathrm{m}}\right)\right) ;\right. \\
& u \in(-\delta, \delta) \subset \mathfrak{R} \text { for some } \delta>0 ; \\
& \left.\left\|\underline{\mu}_{\mathrm{m}}-\underline{\mu}_{\mathrm{m}}^{\circ}\right\|<\varepsilon \text { for some } \varepsilon>0\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \underline{\lambda}_{\mathrm{m}}^{*}: \Re \times \mathfrak{R}^{\mathrm{n}-\mathrm{m}} \rightarrow \mathfrak{R}^{\mathrm{m}} \quad \text { and } \\
& \mathrm{x}^{*}: \Re \times \mathfrak{R}^{\mathrm{n}-\mathrm{m}} \rightarrow \mathrm{X}
\end{aligned}
$$

are $\mathrm{C}^{\mathrm{r}-1}$ mapping.
We shall use the results of THEOREM 2.2 to study the linked system (1.1)

3. Linked Multiparameter Eigenvalue Proplems

Consider the system

$$
M_{i}(\lambda, x)=\left(A_{i}-\sum_{j=1}^{n} \lambda_{1} B_{i j}\right) x_{i}-f_{i}(\lambda, x)=0 ;
$$

M. H. Sallam

$i=1, \ldots, m ; \quad m \leq n$ where $x=\left(x_{1}, \ldots, x_{m}\right), \quad x_{i} \in H_{i}, A_{i}, B_{i j}$ are all Hermitian (bounded and self-adjoint linear operators) and

$$
\mathrm{f}_{\mathrm{i}}: \mathfrak{R}^{\mathrm{n}} \mathrm{H}_{\mathrm{i}} \rightarrow \mathrm{H}_{\mathrm{i}} \text { is a non-linear mapping. }
$$

 product.

$$
(x, y)=\sum_{i=1}^{m}\left(x_{i}, y_{i}\right)_{H_{i}} \quad, x_{i}, y_{i} \in H_{i}
$$

It is clear that x with this inner product becomes a Hilbert space.
Follow binding [1] (see also [7]) we define the following operators:

$$
\mathrm{A}: \mathrm{X} \rightarrow \mathrm{X} ; \quad \mathrm{B}_{\mathrm{j}}: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{~J}=1, \ldots, \mathrm{n}
$$

where

$$
\begin{aligned}
& A x=\left(A_{1} x_{1}, \ldots, A_{m} x_{m}\right) \\
& B_{j} x=\left(B_{1 j} x_{1}, \ldots, B_{m j} x_{m}\right)
\end{aligned}
$$

and

$$
f(\underline{\lambda} . x)=\left(f_{1}(\underline{\lambda}, x), \ldots, f_{m}(\underline{\lambda}, x)\right)
$$

The system (3.1) is then equivalent to the single problem

$$
M(\underline{\lambda}, x):=w(\underline{\lambda}) x-f(\underline{\lambda} \cdot x)=0
$$

where

$$
W(\underline{\lambda}):=A-\sum_{i=1}^{n} \lambda_{j} B_{j}
$$

With this notations, we obtian the following result :

LEMIMA 3.1

Assume that for $\underline{\lambda}=\underline{\lambda}^{*} \in \mathfrak{R}^{n}$ each of the linear problem in the system (3.1) has exactly one llinear independent solution

```
\(\mathrm{X}_{\mathrm{i}}^{\prime}, \mathrm{i}=1, \ldots, \mathrm{~m} ; \mathfrak{R}\left(\mathrm{L}_{\mathrm{i}}(\underline{\lambda})\right) \quad\) is closed and the matrix \(S\left(x^{0}\right)=S\left(x_{1}^{0}, \ldots, x_{m}^{\circ}\right)=\left(\left(B_{i j} x_{i}^{0}, x_{i}^{0}\right)\right), i=1, \ldots, m ; j=1, \ldots, n\)
```

is such that all the determinants of order mot equal zero. Then the equivalent equation

$$
w(\lambda) x=\left(A-\sum_{j=1}^{n} \lambda_{j} B_{j}\right) x=0
$$

satisfy the following :
(i) $W(\underline{\lambda})$ is a sel-adjoint operator for all $\underline{\lambda} \in \Re^{n}$
(ii) $\mathrm{W}\left(\underline{\lambda}^{\circ}\right)$ is a fredholm operator with zero index;

$$
\begin{array}{lc}
\operatorname{dim} N\left(L\left(\lambda^{\circ}\right)\right)=m & \text { where } \\
N\left(L\left(\underline{\lambda}^{\circ}\right)\right)=\operatorname{spen}\left[\zeta_{1}^{\circ}, \ldots, \zeta_{m}^{\circ}\right], \zeta_{i}^{\circ}=\left(0, \ldots, x_{i}^{\circ}\right. \tag{0.0}
\end{array}
$$

and

$$
Y_{1}=R\left(L\left(\lambda^{\circ}\right)\right)=\left[\operatorname{spen}\left[\zeta_{1}, \ldots, \zeta_{m}^{\circ}\right]\right]^{\perp}
$$

(iii) $\mathrm{B}_{\mathrm{j}} \mathrm{x}^{*} \notin \mathrm{Y}_{1} ; \mathrm{x}^{\circ}=\left(\mathrm{x}_{1}^{\circ}, \ldots, \mathrm{x}_{\mathrm{m}}^{\circ}\right), \mathrm{j}=1, \ldots, \mathrm{n}$
and

$$
\operatorname{dim} \quad Y_{o}=m \leq n \quad \text { where }
$$

$$
Y_{0}=\operatorname{spen}\left[B_{1} x^{\circ}, \ldots, B_{n} x^{\circ}\right]
$$

$$
\text { Hence } X=Y_{0} \oplus Y_{1}
$$

PROOF:

(i)and (ii) are easy and we shall prove (iii). since all the determinant of order m not equal zero, then for each j there exist

$$
\left(\mathrm{B}_{\mathrm{ij}} \mathrm{x}_{1}^{*}, \mathrm{x}_{\mathrm{i}}\right) \neq 0 \rightarrow\left(\mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\circ}, \zeta_{\mathrm{i}}^{0}\right) \neq 0 \rightarrow \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{0} \notin \mathrm{Y}_{1}
$$

Also, since rank $S\left(\mathrm{X}^{\circ}\right)=\mathrm{m} \leq \mathrm{n}$, then $\operatorname{dim} \quad \mathrm{Y}_{\mathrm{o}}=\mathrm{m}$ dim and hence

$$
\mathrm{X}=\mathrm{Y}_{\varepsilon} \otimes \mathrm{Y}_{1}
$$

This lemma is exactly the result of [8] for the case $m=n$
We also note that x has the following direct sum

M. H. Sallam

$$
\begin{array}{ll}
\text { where } & X=X_{o} \oplus X_{1} \\
& X_{o}=\operatorname{spec}\left(X^{\circ}\right) \\
\text { and } & X_{1}=\left[\operatorname{spen}\left[\zeta_{1}, \ldots, \zeta_{m}^{\circ}\right]\right]^{\perp}
\end{array}
$$

For the non-linear equation (3.2) we have the following:

THEOREM 3.2

> Let $\lambda^{\circ} \in \mathfrak{R}^{\mathrm{n}}$ be as in lemma 3.1 and let $\mathrm{f}_{\mathrm{i}} ; \mathfrak{R}^{\mathrm{n}} \mathrm{X} \mathrm{X} \rightarrow \mathrm{H}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{~m}$
satisfy;

$$
\begin{array}{ll}
\mathrm{Cl} & \mathrm{f}_{\mathrm{i}} \in \mathrm{C}^{\mathrm{r}}\left(\mathfrak{R}^{\mathrm{n}} \quad \mathrm{X}, \mathrm{H}_{\mathrm{i}}\right), \mathrm{r} \geq 2 \\
\mathrm{C} 2 & \mathrm{f}_{\mathrm{i}}(\underline{\lambda}, 0)=0 \quad \forall \quad \underline{\lambda} \in \mathfrak{R}^{\mathrm{n}} \\
\mathrm{C} 3 & \mathrm{D}_{\mathrm{x}} \mathrm{f}_{\mathrm{i}}\left(\left(\underline{\lambda}_{\mathrm{m}}=\underline{\mu}_{\mathrm{m}}^{\circ}\right) 0\right)=0
\end{array}
$$

then $\left(\underline{\lambda}^{\circ}, 0\right) \in \mathcal{M}^{n} \times X$ is a bifurcation point for solutions of (3.2) and there exists a set of solutions

$$
\begin{gathered}
\left\{(\underline{\lambda}, x)=\left(\underline{\hat{\lambda}}_{m}^{*}\left(u, \underline{\mu}_{m}\right), \underline{\mu}_{m}\right) ; x_{1}^{*}\left(u, \underline{\mu}_{m}\right), \ldots, x_{m}^{*}\left(u, \underline{\mu}_{m}\right):\right. \\
u \in(-\delta, \delta) \subset \Re \quad \text { for some } \delta>0\}
\end{gathered}
$$

where

$$
\begin{array}{ll}
& \lambda_{m}^{*} \cdot \mathfrak{R} \times \Re^{n-m} \rightarrow \Re^{m} \\
\text { and } & x_{i}^{*} \cdot \mathfrak{R} \times \mathfrak{M}^{n-m} \rightarrow H_{i}, i=1, \ldots, m \\
\text { are } & C^{r-1} \quad \text { mappings. }
\end{array}
$$

Proof:

The results follow by an application of the method of liapunou-schmidt , as in [7] to fines solution of the form:

$$
x=u x+x^{1} \quad \text { where } \quad u \in \mathfrak{R} \quad x^{1} \in X_{1}
$$

Generalised Simple Eigenvalues

For the sake of completeness we will proceed with the proof, suitably modified for our problem. let Q_{0} and Q_{1} and be the projections of Y onto Y_{o} and Y_{1} respectively (see(3.4)). Then

$$
\begin{align*}
& M(\underline{\lambda} ; x)=0 \tag{3.6}\\
& \Leftrightarrow Q_{1} M(\underline{\lambda} ; x)=0 \text { and } Q_{0} M(\underline{\lambda} ; x)=0
\end{align*}
$$

the so called auxiliary equation and bifurcation equation respectively. The auxiliary equation becomes

$$
\begin{align*}
& \quad Q_{1} w(\underline{\lambda}) x_{1}-Q_{1} f\left(\left(\lambda_{m}, \mu_{m}\right), u x^{\circ}+x^{1}\right)=0 \tag{3.7}\\
& \text { where } \\
& \quad u \in \mathfrak{R}, x^{1} \in X_{1} .
\end{align*}
$$

consider the mapping $\psi: \Re \times \Re^{\mathrm{n}-\mathrm{m}} \times \Re \times \mathrm{X}_{1} \rightarrow \mathrm{Y}_{1}$ defined by

$$
\psi\left(\underline{\lambda}_{m}, \underline{\mu}_{m} u, x^{1}\right)=Q_{1} w(\underline{\lambda}) x_{1}-Q_{1} f\left(\left(\underline{\lambda}_{m}, \underline{\mu}_{m}\right), u x^{\circ}+x^{1}\right)=0
$$

Using C2 and C3 we obtain

$$
\begin{aligned}
& \psi\left(\underline{\lambda}_{m}^{0}, \underline{\mu}_{m}^{\circ}, 0,0\right)=0 \\
& D_{x}: \psi\left(\underline{\lambda}_{m}^{\circ}, \underline{\mu}_{m}^{0}, 0,0\right)=Q_{1} w\left(\underline{\lambda}^{\circ}\right)
\end{aligned}
$$

since $Q_{1} W\left(\underline{\lambda}^{\circ}\right): X_{1} \rightarrow y_{1}$ is a bounded linear isomorphism, it follows from the implicit function theorem that there exists a neighborhood
$\mathrm{U} \subset \Re^{\mathrm{m}} \times \Re^{\mathrm{n}-\mathrm{m}} \times \mathfrak{R}$ of $\left(\underline{\lambda}_{m}^{0}, \underline{\mu}_{\mathrm{m}}^{0}, 0\right)$ and a unique mapping $x^{1 *} \in C\left(U, X_{1}\right)$ such that

$$
\mathrm{x}^{1 *}\left(\hat{\underline{z}}_{\mathrm{m}}^{\circ} \cdot \underline{\mu}_{\mathrm{m}}^{0}, 0\right)=0
$$

and

$$
\psi\left(\underline{\lambda}_{m} \cdot \underline{\mu}_{m} \cdot \mathbf{u}, \mathbf{x}^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)\right)=0
$$

i.e the auxiliary equation (3.8) is satisfied since ,by C2 $\left(\underline{\lambda}_{m}^{j} \cdot \underline{\mu}_{m}^{o}, 0,0\right)$

M. H. Sallam

satisfies (3.7) and ,by the implicit function theorem $\mathbf{x}^{1 *}$ is unique, it follows that

$$
x^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right)=0 \forall\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right) \in U .
$$

Differentiation of (3.9) with respect to u and using C3 and (3.10) gives

$$
Q_{1} W\left(\underline{\lambda}_{m} ; \underline{\mu}_{m}^{\circ}\right) D_{u} x^{1 *}\left(\underline{\lambda}_{m}, \underline{L}_{m}^{\circ}, 0\right)=0 .
$$

Since for $\| \underline{\lambda}-\underline{\lambda}^{0}$ sufficiently small $Q_{1} W\left(\underline{\lambda}_{m}, \underline{\mu}_{m}^{2}\right)$ is a bounded linear isomorphism of X_{1} onto Y_{1} we can conclude that

$$
\mathrm{D}_{\mathrm{u}} \mathrm{x}^{1 *}\left(\underline{\lambda}_{\mathrm{m}}, \underline{\mu}_{\mathrm{m}}^{\circ}, 0\right)=0 \quad \text { for } \quad\left\|\underline{\lambda}_{\mathrm{m}}-\underline{\lambda}_{\mathrm{m}}^{\circ}\right\| \text { sufficiently small }
$$

Differentiating (3.10) repeatedly with respect to $\underline{\mu}_{\mathrm{m}}$ gives

$$
D_{\mu_{m}}^{k} x^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right)=0, \quad 1 \leq \mathrm{k} \leq \mathrm{r} .
$$

Using (3.10) - (3.12) we see, from Taylors theorem

$$
x^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)=0\left(|u|^{2}+|u|\left\|\underline{\mu}_{m}-\underline{\mu}_{m}^{\circ}\right\|\right) \text { as }|u|,\left\|\underline{\mu}_{m}-\underline{\mu}_{m}^{\circ}\right\| \rightarrow 0 .
$$

$$
\text { where } \quad x^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)=\left(x_{1}^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right), \ldots, x_{m}^{1 *}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)\right) \text {. }
$$

The bifurcation equation becomes

Using the basis vectors $B_{j} x^{*} . i=1, \ldots m$ the bifurcation function

$$
\begin{aligned}
& Q_{0} W\left(\underline{\lambda_{\alpha}}\right)\left(u x^{0}+x^{1 *}\left(\underline{\underline{\lambda}}_{m} \cdot \underline{\mu}_{m} \cdot \mathbf{u}\right)\right)-Q_{a} f\left(\underline{\lambda}_{m} \cdot \underline{\mu}_{m} \cdot u x^{2}+x^{\mathrm{I*}}\left(\underline{\underline{\lambda}}_{m} \cdot \underline{\mu}_{m} \cdot \mathbf{u}\right)=0\right.
\end{aligned}
$$

$$
\begin{align*}
& -Q_{a} f\left(\left(\underline{\lambda}_{m}-\underline{\mu}_{n}\right), u x \div x\left(\underline{\lambda}_{m}^{c}, \underline{\mu}_{m}^{i *} \cdot u\right)\right)=0 \tag{3.13}
\end{align*}
$$

$$
\begin{aligned}
& F=\left(F, \ldots, F_{m}\right): \Re^{m} \times \Re^{n-m} \times \Re \rightarrow \Re^{m} \quad \text { is defined by } \\
& \sum_{j=1}^{m} F_{j}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right) B_{j} x^{0}:=-u \sum_{j=1}^{m}\left(\lambda_{j}-\lambda_{j}^{o}\right) B_{j} x^{0}-\sum_{j=1}^{m} G_{j}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right) .
\end{aligned}
$$

where
thus

$$
F\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)=-u\left(\underline{\lambda}_{m}-\underline{\lambda}_{m}^{0}\right)-G\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)
$$

where

$$
\mathrm{G}=\left(\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{m}}\right): \mathfrak{R}^{\mathrm{m}} * \mathfrak{R}^{\mathrm{n}-\mathrm{m}} * \mathfrak{R} \rightarrow \mathfrak{R}^{\mathrm{m}}
$$

satisfies

$$
G\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right)=0
$$

so that
and

$$
\begin{aligned}
& D_{\underline{\mu}_{-}}^{k} G\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right)=0, \quad 1 \leq k \leq r \\
& D_{u} G\left(\underline{\lambda}_{m}^{\circ}, \underline{\mu}_{m}^{\circ}, 0\right)=0 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& G\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right)=u \bar{G}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right) \\
& \text { where } \\
& \tilde{G} \in G^{r-1}\left(\mathfrak{R}^{m} * \mathfrak{R}^{n-m} * \mathfrak{R}^{\prime}, \Re^{m}\right) .
\end{aligned}
$$

and the bifurcation equations reduces to

$$
H\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, u\right):=-\left(\underline{\lambda}_{m}-\underline{\lambda}_{m}^{0}\right)-\tilde{G}\left(\underline{\lambda}_{m}, \underline{\mu}_{m}, 0\right)=0
$$

now.

M. H. Sallam

$$
\tilde{G}\left(\underline{\lambda}_{m}^{\circ}, \underline{\mu}_{m}^{\circ}, 0\right)=0 \text { and } D_{\underline{\lambda}_{m}} \tilde{G}\left(\hat{\lambda}_{m}^{\sigma}, \underline{\mu}_{m}^{\circ}, 0\right)=0
$$

so that

$$
H\left(\hat{\underline{i}}_{m}^{\circ}, \underline{\mu}_{m}^{\circ}, 0\right)=0 \text { and } D_{\lambda_{m}} H\left(\underline{\lambda}_{m}^{\circ}, \underline{\mu}_{m}^{\circ}, 0\right)=-I \mathrm{Idm}
$$

where Idm denotes the identity mapping on \mathfrak{R}^{n}
Therefore, by the implicit function theorem, there is a neighborhood $\mathrm{VC} \mathfrak{R}^{n-m} \times \Re$ of $\left(\mu_{m}^{\circ}, 0\right)$ and of and a unique function

$$
\underline{\lambda}_{\mathrm{m}}^{*} \in \mathrm{C}^{r-1}\left(\mathrm{~V}, \Re^{\mathrm{m}}\right) \text { such that }
$$

$$
\mathrm{H}\left(\underline{\lambda}_{\mathrm{m}}^{*}\left(\underline{\mu}_{\mathrm{m}}, \mathrm{u}\right)\right)=0 \quad \forall\left(\underline{\mu}_{\mathrm{m}} \cdot \mathrm{u}\right) \in \mathrm{V}
$$

and

$$
\underline{\lambda}_{m}^{*}\left(\underline{\mu}_{m}, u\right)=\underline{\mu}_{m}^{\circ}+0\left(|u|+\left\|\underline{\mu}_{m}-\underline{\mu}_{m}^{\circ}\right\|\right)
$$

The (3.5) has non-trivial solutions
where

$$
\underline{\lambda}_{m}^{*}\left(\underline{\mu}_{m} \cdot u\right)=\underline{\lambda}_{m}^{0}+0\left(|u|+\left\|\underline{\mu}_{m}-\underline{\mu}_{m}^{*}\right\|\right)
$$

and

$$
\begin{aligned}
& x^{1 *}\left(\underline{\mu}_{\mathrm{m}} \cdot \mathrm{u}\right)=u x^{\circ}+0\left(\left|\mathrm{u}^{2}+|u| \| \underline{\mu}_{\mathrm{m}}-\underline{\mu}_{\mathrm{m}}^{\circ}\right|\right) \\
& \text { as }\left\|\underline{\mu}_{\mathrm{m}}-\underline{\mu}_{\mathrm{m}}^{\circ}\right\|,|\mathrm{u}| \rightarrow 0 .
\end{aligned}
$$

We also have the following result on linear perturbation of the system (1.1) and the proof is again as Theorem 3.2.

THEOREM 3.3

Suppose $H_{i}, i=1 \ldots \ldots, k$ are Helpert spaces $A_{i}(\underline{\varepsilon}), B_{i j}(\underline{\varepsilon}): H_{i} \rightarrow H_{i}$ are bounded self-adjoint linear operators continues in $\underline{\varepsilon}$ (or C^{r} resp analytic), $\varepsilon \in C^{d}$, for $\underline{\varepsilon}$ in an open neighborhood of $0 \in C^{\prime}$. If $\lambda=\underline{\lambda}^{\prime} \in \mu^{n}$ is such that each of the proplems in system (3.3) has a solution $x_{i}^{\prime} \neq 0$ and the conditions of LEMMA(3,1) are satisfied,

Gencralised Simple Eigenvalues ..

then there is a constant $\delta>0$ such that for $\underline{\varepsilon} \in C^{i},\|\varepsilon\|<\delta,\left\|\mu_{m}-\underline{\mu}^{0}\right\|<\delta$ there is a bifurcation i.e
solutions $\left(\left(\underline{\lambda}_{m}^{*}\left(\varepsilon, \underline{\mu}_{m}\right), \underline{\mu}_{m}\right), x^{*}\left(\underline{\varepsilon}, \underline{\mu}_{m}\right)\right)$ of the system

$$
\left(A_{i}(\varepsilon)-\sum_{j=1}^{n} \lambda_{j} A_{i j}(\varepsilon)\right) x_{i}=0 \quad i=1, \ldots, m
$$

with $\left(\lambda_{m}^{*}\left(0, \underline{\mu}^{\circ}\right), \underline{\mu}_{m}^{\circ}\right)=\left(\underline{\lambda}_{m}^{j}, \underline{\mu}_{m}^{\circ}\right)=\underline{\lambda}^{0}, x^{*}\left(0, \underline{\mu}_{m}^{*}\right)=x^{0}$

REFERENCES

[1] P. Binding, Perturbation and bifurcation of non-singular miltiparameric eigenualues; Non linear Anal. 8 (1984), 335352.
[2] P.J. Browne, A copleteness Theorem for a Non - linear Multiparameter eigenvalue problem. J. of differential equations 23, (1977), 285-292.
[3] P.J. Browne and B.d. Sleeman, Non linear multiparameter Sturm - Liowille problems. J. of differential equations 34 , (1979), 139 - 146.
[4] P.J. Browne, Non - linear multiparameter eigenvalue prblems for ordinory differential equations. J. of Math. Anal. and Applications 77, (1980), $425-\quad 432$.
[5] P.I. Browen and B.D. Sleeman, Bifurcation from eigenvalues in non-linear multiparameter sturm - Liouville problems; Glasgow Math. J. 21 (1980) $85-90$
[6] P.J. Browne and B.D. Sleeman, Non - linear multiparameter eigemalue problems. Quaestiones Math. 4 (1981), 277-283.
[7] D.F. McGhee and M.H. Sallam, Simple eigenvalues and bifurcation for a multiparameter problem. Proceedings of the Edinburgh Math Soc.31,(1988).77-88.

M. H. Sallam

تعميم القيممالذاتيه البسيطه والتشهب لمساله قيمم
 ذاتيه مرتبطه متتعدده الباراميترات

> محمود سلام و شكرى ندا
> قَسم الرياضبيات - كلية العلوم - جامعة المنوفية

الملخص العربى

فى هذا البحث تم دراسه مجموعة من المعادلات الغير خطبة

 اعتمادها تحليلا على بار امتز اضفافى) حيث عدد المعادلات اقل مسن عدد البارمترات وبفرض الن بعد نواه الموثر الخطى هو النوحده ثـمْ اثبـات الــه لـهـذه المجمو عـه الغير خطيـه حـل متشـعب مــن الحـل الصفرى عند القيمه اللاتيه البسيطه للمؤثر الخطى.

