(,) (s)

University

: Menoufia

Faculty

: Electronic Engineering

Department

: Physics and Engineering Maths

Academic level: preparatory

Course Name : Physics 2

Course Code :

Academic Year: 2018-2019

مامعة المامانية

Date

: 16/6/2019

Time

: 3 Hours

No. of Papers

: 1(Two Faces)

No. of Questions:

: 6

Full Mark

: 90 Marks

Exam

: Final Exam.

Examiner: Prof. Dr. Mohamed Dawoud

Dr. Mohamed Said Shams

تعليمات هامة: ١- لا تكتب بالقلم الرصاص.

٧ - ابدأ من جهة اليمين أجابة الكهربية اولا ثم المغناطيسية بالترتيب.

Constants

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$

 $\mu_0 = 4\pi \times 10^{-7} \text{ T m/A}$

 $|e| = 1.6 \times 10^{-19} \text{ C}$

 $m_p = 1.67 \times 10^{-27} \text{ kg}$

 $m_e = 9.1 \times 10^{-31} \text{ kg}$

Answer all the following questions: Part 1 (Electricity)

Question No 1: (15 Marks)

[1-a] Define the following quantites and state their units: Electric flux, Electric dipole, Electric potential, Capacitance, Dielectric constant. [5 Marks]

[1-b] Fig. 1 shows an arrangement of four charged particles, with angle $\theta = 30.0^{\circ}$ and distance d = 2.00 cm. Particle 2 has charge $q_2 = +8.00 \times 10^{-19}$ C; particles 3 and 4 have charges $q_3 = q_4 = -1.60 \times 10^{-19}$ C. What is distance D between the origin and particle 2 if the net electrostatic force on particle 1 due to the other particles is zero? [10 Marks]

Question No 2: (15 Marks)

[2-a] Fig. 2 shows a ring of radius R carries a uniformly distributed positive total charge Q. Calculate the electric field due to the ring at a point P lying a distance Z from its center along the central axis perpendicular to the plane of the ring. [5 Marks]

[1-b] Two equal positive charges are at opposite corners of a trapezoid (شبه منحرف) as shown in **Fig.3**. Find the horizontal and vertical components of the electric field at the point P in terms of (עצ"ש) d and Q. [10 Marks]

Page 1 of 2

Fig. 2

Question No 3: (15 Marks)

- [3-a] A Spherical capacitor is formed of a central cross section of a capacitor that consists of two concentric spherical shells, of radii a and b, where b>a. Prove that $C = 4\pi\varepsilon_0 \frac{ab}{b-a}$
- [2-b] The space between two concentric conducting spherical shells of radii b =1.70 cm and a =1.20 cm is filled with a substance of dielectric constant k=23.5. A potential difference V=73 V is applied across the inner and outer shells. Determine (i) the capacitance of the device, (ii) the free charge q on the inner shell. [10 Marks]

Part 2(Magnetism)

Question No 4: (15 Marks)

- [4-a] List in details several similarties and differences between the following:
 - i) Coloumb's law & Biot-Savart law.
 - ii) Gauss' law & Ampere's law.
 - iii) Electric dipole moment & Magnetic dipole moment.
 - iv) Electric force & Magnetic force.
 - v) Gauss' law in electricity & Gauss' law in magnetism. [5 Marks]
- [4-b] A proton travels with a speed of 3×10^6 m/s at an angle of 37.0° with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration? [10 Marks]

Question No 5: (15 Marks)

- [5-a] Consider a thin, straight wire carrying a constant current I and placed along the x axis as shown in Fig.4. Determine the magnitude and direction of the magnetic field at point P due to this current. [5 Marks]
- [5-b]Fig. 5 shows two current segments. The lower segment carries a current of i_1 =0.40 A and includes a semicircular arc with radius 5.0 cm, angle 180°, and center point P. The upper segment carries current $i_2 = 2l_1$ and includes a circular arc with radius 4.0 cm, angle 120°, and the same center point P. (a) What are the the magnitude and direction of the net
 - magnetic field at P for the indicated current directions? **(b)** What are the magnitude and direction if i_1 is reversed?
 - **(b)** What are the magnitude and direction if i_1 is reversed? [10 Marks]

Fig. 4

Fig. 5

Question No 6: (15 Marks)

- [6-a] Define the following quantites and state their units: Magnetic field, Magnetic flux, Magnetic dipole, Time constant and Self inductance. [5 Marks]
- [6-b] Calculate the resistance in an RL circuit in which L=2.5H and the current increases to 90% of its final value in 3 s? [10 Marks]

Page 2 of 2

With best wishes for success