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Synopsis

The finite element and more recently the boundary
element method,are widely applied.Many computer programs
for solving several problems are available. The conce-
ntrated deformation method can have the same field of
application with the advantage of large reduction of
computer work due to the reduction of the number of
elements,yielding the same accuracy. There is no need
in many cases to add other type of elements to determine
the reactionsas forexample the reactions for continuons
slab and beam. Simple solution is obtained in case of
existance of a real joint ,especially if the joint has
a stiffness different from the monolithic body ( as
composite beams),being much complicated in other methods.

Notation
a = Length of element in the x direction.
= Width of element in the y direction.

= Modulus of elasticity of element in the x
X direction

£ = Modulus of elasticity of element in the Y
Y direction
1 = Moment of inertia of element in the x direction.
Ix = Moment of inertia of element in the y direction.
GY = Shear modulus.
t =. Thickness of element
P = Potential energy or work done
Q = Shearing force.
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q = Uniform locad on the roof.

M = Bending mement.

S # Stiffness.

T :I Torsional moment.

> = Angle of rotation in bending.
$ = Angle of rotation in torsion
& = Stiffness in bending

Y - Stiffness in torsion

g = Stiffness in shear

7 = Stiffness in compression or tension
introduction:

In case of the method of concentrated deformation
the structure is divided into =2lements as in other
methods. To.get the same accuracy of the other methods
the number of elements is lesser. In case of pre-cast
structures the pre-cast unit can be considerd as one
element for easier approach and the joints are consid-
ered as the boundary of the element. .The edements are
considered absolutely stiff.All the deformations are
concentrated at the boundary (joints between the
glements ). As a first approach the stresses at the
boundary were considered uniform and equal(1).In such
approach To get yuuw accuracy,the elements must be
small enough using a large number of elements . But
by considering the stresses distributed nonuniformly
a good accuracy can be achieved with a smaller number
of elements. The approach to the solution is based
on the equilibrium of elements which is considerably
simple and easier,compared with other methods. 1t is
very interesting to state that when the element boundary
are real joints with stiffness other than that of the
elements,no change in the approach to the solub%:A
will occur, as will be discussed later. ApplicafNaon of
this method has.proven to be successful for statically
determinate composite beams (2),.
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Method 6? analysis:

As a simple approach the method will be explained
on an example of beamless slab of 2 panels,as shown
in fig. 1a .

The roof must be divided into suitable rectangular
elements,of dimensions axb, In our example,it is
divided into elements of 0.5 x 0.5m, The system will
be considered as stiff plates connected by elastic
joints which can resist bending momen>=,torsion and
shear. The joints between the elements can be' condi-
tional joints (due to division ). or can be real joints
in case of precast structures. The elements can be
of diffrent material (physical parameters ) or geometry
(dimensions)% Because the elcments are considered
as absolutely stiff,all the deformations ( due to
bending,torsion and shear )} are considered ta be conc-
-entrated at the element edges and at the joints.

The connection between the elements is considered to
consist of three diffrent connections: i) bending
conection ii) torsion connection iii) shear conne-
ction fig. 1b. .

Each of the above connections is considered as
a complex connection which consists of the part which
takes the effect of own deformation of the connected
elements itself and the effect of deformation of the
real jeoint if exists. So the stiffness of the joint
due to bending or torsion or shear is considered to
consist generally of three parts of stiffness which
can generally be determined as follows:

1 1 4 1

“E= =TT 4§t TET eeeees . 1
i J r
jhere : S is the joint stiffness
Si& S. the elements stiffness
S ig the real joint stiffness which must be
determined from experiments. In ce=«there is no real
joints, Sr is taken equal to infii..o-

The three values of S (in bending, torsion and
shear can be determined as follows

As stated before the slab is divided into elements
of dimensions axb in the x and y directions,respecti-
vely, and of thickness t

Case of bending:

When the edge b is acted upen by bending mements= Mx
Potential enerqé for element of volume a_b.t:
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Knowing that M.z o’ x '
. O’X = , E_= ’ IX_: bt’*/12

2E_ 17 12
x© X

a M?
X

26,1,

and knowing that M_ = Q&-«x
Where @ is the stiffness™in ¥ending and «_ is the
angle of rotation 4

The work down by the moment:

P = 2.%. M . &
X y

- 2

= MX / L e (2)
From (1) and (2)

w = 281 /a where I =bt>/12
X X X - X

Similarly: w = 2001 /b I = at’/12
* y y yly/P o Ly /
And in case of isctropic body = EX:EyzE.

Case of Shear:

- - = = -

When the edge b of the element is acted upon by
a shearing load Q

Knowing that ¥ = 77/ G, and
ZX = zX

t t
v Qbls -2 ) [+ -2)/2]
- Q-S - 2 2 3
zx” I .b ~ , Iy . b S I = bt /2

Q5 -2) (5+2)/2

I < et
Potential energy

P o= %.STN. sz.dv
v
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[ SA 2 (—- 1*) di
t/2
= Q* -ab ‘S['ta .27 24'] dz
B. 7.6 16 ~ 2
S A S L AP S SO
8.1° .6 16 T 2 3 4 5 16
Q* ab Ei _A 3Q%a (1) .
= "8I G T 30 56tb "
¥
And knowing that Q= é.A

Where § =Stiffness in shear

Work done by shear Q

T
P=2.4.0.4 = Xy
3.0 ) gx l,AO.a\mc?/

From (1) and (2)
yoll
§, :% G. tb (/C
o

a ‘ T
Similarly S - 2. G.t p
= 3. G.t. ,

y &y -

Case of torsion: Txy /CHDCBCUD

e - ——— o

The element is acted upon by torsional moment of
equal intensity at all the edges

For the shown case of deformation potential energy of
the element : :

P o= 4

Tl 7

v‘tyx - ny dv
Where: B&x z Z;X/G.
Work done by torsion :

(2.7 .00 b+ 2T, . a. c]:y )
Ty (b + a.q:y ) I (2)

Following the same. analysis as before, the stiffness
due to torsion can be expressed as follows:

P =

N

Y, . Gt b,y .8t 2
Tooa y ~ 3 b

After determining the stiffness of the elements and
if a real ioint exists, its stiffness must be given from
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the standards or'experiments, the general stiffness of
the joint will be determined from equation(]) for bending,
torsion and shear .

Ls stated before the first step in the solution is
o divide the roof intoc a suitable number of elements .
n exgfiple the flat slab of two panels 3x3m and thick-
10ctm is devided to elements of 0,5x0.5m in the x
v directions as shown in figure 1a. The elements
' cargy any type of loading, but for simplicity in our
gxample,ine roof is assumed to carry a uniform load
= 600 kg/m? .

The next step is simply to study the equilibrium of
the slements in the vertical direction and around the
tw axes x and y . simply Zg = 0, TMx= 0, ZMy= 0. The
cositive direction of Q, Mx, My can be chosen at any dir-
aetion, w2 will assume the possitive directions as shown
in figure la. ’

io reduce the amount of work in the solution,the
zlements which have the same forces are given the same
cype and their equilibrium is shown in figure 2.. The
2 >ie figures used in figure 1a give the element number.
ihe roman numbers give the type number. So,we have 72
eizments and thirteen types.

The next step after determining the complex stiff-
ness of the joint, and the equilibrium of the elemeqts,
is to apply the stiffness method. The vector of displ-
2cement of the svstem U {two angles of rotation around
the x and vy axis %y and ®yand vertical displacement z
for each element ) is determined by solving the following
matrix squations of the stiffne=ss method:

(A1-051.0A'1T = F ..... 11

where S
{A] is the matrix of the equations of equilibrium
{;?3 is the transposed matrix of [A].
{51 stiffness metrix

)

v2etor of the external forces.
The matrix [S] is a diagonal matrix.

The matrix LAaj [S] {Ag} is the matrix of internal
stiffness of the whole system.
Solving equation II we get the displacement for every

~glemernt (O(X ) .:xy and Z ) )
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Applying what was stated before for the example,
since matrix [S] is a diagonal matrix then the matrix
(S] written as one raw matrix and the matrix [A] will
have the view shown in table 1 .

To determine the stiffness values in the example,
the material is considered gsotropic with the following
characteristics: £ = 2,0.10 tAn’,/“:O,ZS, G=E/2(1+4)=0,4E
and the roof is assumed to carry a load of 0,600t/m?
(0,150 t/element since the element is 0,5x0,5m)

For simplicity all the elements are of the same mat-
erial, having the same dimensions and thickness. No
real joint exists,then the stiffnesses of all elements are
equal, and are equal in both directions (a=b). Then:

G 1 - Si_ 5]
T I+ T2 77
S, S,
wh . 0 :_Jelement _ 2E1 _ 50.10° £. 250
= ‘9’2" T 2a “T1z2.50 T T3 *-
- _ element _ 1 s A, 1 5 _200
AR 7 L — 5 = 3 Gt’. /2= 7 .0,4E.10°=57€
mo o ogn gelement _ 5 a8,,_ 3 _J0E
§" = § = —=T = ot §/2= £ -0,4E.10=—3

To determine the reaction at the supports a reason-
able value of the stiffness of the supports is assumed
equal to 50 S at the external corners. For the reaction
at mid span in order to keeP the symmetry of the global
stiffness matrix [A] [S] [A'] it is assumed to have two
equal reactions at the same point for the left and right
elements having the same stiffness of the external corner
reactians:

505

21=?2=

To reduce the volume of work,since the matrix of
internal stiffness [AJ[S]{A'] is a symmetrical matrix,
it is enough to have the values onlv above the diagonal
( in the band width )

The band width =3xMax.difference in jointed element
number + 2.

For our example: bhand width is 3,0.6,0 + 2= 20.
Since according to the stiffness method for our case the
strains in the joint will be affected only by the displ-
acement of the elements directly adjacent to it(this is
clear from table 1), and since the complex stiffness
matrix of the joint is a diagonal matrix, the raws of
the internal stiffness matrix can be determined mathem-
atically for every element taking into consideration the
effect of the elements jointed to it as shown in table 2.
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The solution of the matrix equations was done by the
computer.

As stated before the solution of the matrix
equation gives the displacements ( o ,% and Z ) at the
center of each element. To get ‘the Jer¥ical displac-
ement ( in the Z direction ) for any other point in
the element except at the center the two angles of
rotation “x and u& must be taken into consideration .

The bending moment at any joint between two elements
i and j
M=z (g - oA )
i J
Where & is considered in the direction of the bending
moment.

The torsional moment at any joint between two
elements i and j :

- ~x .
T =y ; )

Where X is considered in the direction of. the joint

(perpendicular to the direction 1i,j ).

The shearing force at any joint is equal to the
diffrence between the perpendicular to the surface
displacements at the middle of the contacted edges
multipled by the shear stiffness. Ffor example, at a
horizontal joint between elements i and j :

n
QIJ = é [(Zi+ x, .

e B 0 (2% ) )

2

The reaction at any support is equal to the disp-
lacement at its point in its direction multiplied by
the support stiffness. '

Analysis of results:
Check of reactions:

. Due to symmetry the reactions are 4R1 at the four
outer corners,and 4R2 at the two middle supports ( as
stated before to keep the symmetry the reactions at
the middle supports was assumed equal to 2R2).

For the four outer corner elements: 2
7 = 0,193260638. 10E , < = 0,438810508.10° 10E,
3, t 3
Ky: 0,334106459.10" .10E
3
for the four elements at the middle suppgrts
Z = 0,186566741 .10E o, = 0,569560415.10°. 10E
3, 3

xy: 0,176508133,10° .10
3
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O

4R1+4R2= 6( Dz 4,2, )= & / (z1+22)sin°e?LiZL,‘A__g_“A,

SR =
4 10 5
TR = ~T600 .50.—3 .2,0.10 [[0,193260638—(0,&38810508+
2
0,334106459).10" .251+[0,186566741-(0,176508133+
2
0,569560415)107.251]
TR = 10,8 T, Where 25 = %:%
Total load on rcof= 0,6.3,0.3,0.2,0 = 10,87- LR 0.k
Check of bending moments:

Generally,to determine the bending moment at the

joints the angles of rotation of the two elements in a
direction perpendicular to the joint are considerd.

Where

M:(“i—"(j) w for our example

(o _ o 5 5. (X _«,
= (% - j).zgo .2,0.10°.2,0.107= (% J)10(;0 nt/m.

2,0 to change_go 1m striup (width of the element
0,5m ) and 10 “to change to mt.

The total+ve bending moment in the y direction at

the center line of the slab sec I-I can be calculated
as follows:

Due to the symmetry “i— &, = 2 &,

J 1

EM=[1000/3X2e]10.5 (0.5due to width of element=0,5m)
(for. onespah)

= [2,0.1000 [1,06+0,8832+0,8190+0,9102+1,1091+1,2924]
3

107 J.0,5

M=[0.707+0.589+0.546+0.6087+0.759+0.86210,5=2,025

M(for

Check

2
one span)= 0,6.3,3 /8 =2,025mt =%IM o.k

of Bending moments distribution:

The given example was also solved using the finite

element method to compare the results.

In figure 3 the number given at the top left

corner of the element is the element number used in
the method of concentrated deformation and the number
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given in the bottom right corner is the number of element
used in the method of finite elements.

Moments along section II - 11 fig.3.
M = (°‘i'°ﬁ) 10°%/3mt/m .

2
M (0,334106-0,205328).10" .10°/3= 0,429

1,7 °
2
Moyy3= (0,205328-0,039897).10" .10%/3=0,5514

2
M (0,039897+0,116739).10" .10%/3=0,522

13*19=

2
M 5:(-D,116739+0,21727).10—'.10’/3:0,335

19°2

3
M =(-0,21727+0,176508).10" .10°/3=-0,136

25731

2
M =(-0,176508-0,176508).10" .10°%/3=-1,177

31737

The distribution of bending moments along section
II-I1 are given in figure 3.

Similarly the moments distribution along axes III
is also given.

Along axes I-I the moments by the concentrated
deformation method were given when the check of the
bending moments was done . The finite element methed
give the values at the middle of the element (at sec.
1£1°), the values were increased by a ccefficont
1,0285 to get the values of the moments at section I-I.

Figure 3 shown that the distribution of moments
give good coincidence with other methods.

Conclusions:

1) For statically indeterminate slabs and beams the
method of concentrated deformation give much easier
approach for the solution compared with any other method,
specially in case of existance of real joint which have
stiffness different from that of the monolitic body.

2) The results obtained using the method of concentrated
deformation are in good agreement with the results
obtained by other known methods. Therefore, use of this
method is advantageous due to its simplicity and lesser
work.

\
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TYPE 1 ETEMENT NO. 1
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Number in Ois the number in the matrix.
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