

كلية الهندسة قسم الرياضيات والفيزياء الهندسية
(طلبة الفرقة الإعدادية)

1] The cross section of a fresh-water tank with a slanted (مائل) bottom is shown. A rectangular door 1.6 m by 0.8 m (normal to the plane of the figure) in the bottom of the tank is hinged at A and is opened against the pressure of the water by the cable under a tension P as shown. Calculate P. (density of water $=1.0 \mathrm{Mg} / \mathrm{m}^{3}$)
[12 Degree]

Prob. (1)

Prob.(2)

2] Determine the range of values which the mass m_{O} may have so that the $100-\mathrm{kg}$ block shown in the figure will remain in equilibrium (neither start moving up the plane nor slip down the plane). The coefficient of static friction for the contact surfaces is 0.30 .
[12 Degree]
3] Determine the force in members $H C, B C$, and $G F$ of the truss and state if the members are in tension or compression.
[12 Degree]

4] The bench hold-down clamp is being used to clamp two boards (لوحين خشب) together while they are being glued (مطليين بمادة لاصقة "غراء"). What torque M must be applied to the screw in order to produce a $200-\mathrm{lb}$ compression between the boards?. The $1 / 2$ inch diameter single-thread screw has a pitch of $1 / 12$ inch, and the coefficient of friction in the threads may be taken to be 0.20 . Neglect any friction in the small ball contact at A and assume that the contact force at A is directed along the axis of the screw. What torque M^{\prime} is required to loosen the clamp?
[12 Degree]

; Prob. (4)

Prob.(5)

5] The $80-\mathrm{kg}$ ventilation (تهوية) door $O D$ with mass center at G is held in the open position shown by means of a moment M applied at A to the opening linkage. Member $A B$ is parallel to the door for the 30° position shown, determine M.
[12 Degree]
6] The boy at A attempts to throw a ball over the roof of a barn (حظّرة) such that it is launched at an angle $\theta_{A}=40^{\circ}$. Determine the minimum speed v_{A} at which he must throw the ball so that it reaches its maximum height at C. Also, find the distance d where the boy must stand so that he can make the throw.
[12 Degree]

مع أطيب الأمنيات بالنجاح والنوفيق،

